Roberto Sacco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8679194/publications.pdf

Version: 2024-02-01

304368 344852 2,221 38 22 36 h-index citations g-index papers 38 38 38 3503 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A genetic variant that disrupts MET transcription is associated with autism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16834-16839.	3.3	389
2	Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. European Neuropsychopharmacology, 2014, 24, 919-929.	0.3	251
3	The EU-AIMS Longitudinal European Autism Project (LEAP): design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders. Molecular Autism, 2017, 8, 24.	2.6	183
4	Head circumference and brain size in autism spectrum disorder: A systematic review and meta-analysis. Psychiatry Research - Neuroimaging, 2015, 234, 239-251.	0.9	178
5	Clinical, Morphological, and Biochemical Correlates of Head Circumference in Autism. Biological Psychiatry, 2007, 62, 1038-1047.	0.7	131
6	Urinary $\langle i \rangle p \langle j \rangle$ -cresol is elevated in small children with severe autism spectrum disorder. Biomarkers, 2011, 16, 252-260.	0.9	115
7	Urinary <i>p</i> -cresol is elevated in young French children with autism spectrum disorder: a replication study. Biomarkers, 2014, 19, 463-470.	0.9	88
8	Principal pathogenetic components and biological endophenotypes in autism spectrum disorders. Autism Research, 2010, 3, 237-252.	2.1	85
9	Genome-wide expression studies in Autism spectrum disorder, Rett syndrome, and Down syndrome. Neurobiology of Disease, 2012, 45, 57-68.	2.1	81
10	P-cresol Alters Brain Dopamine Metabolism and Exacerbates Autism-Like Behaviors in the BTBR Mouse. Brain Sciences, 2020, 10, 233.	1.1	55
11	Cluster Analysis of Autistic Patients Based on Principal Pathogenetic Components. Autism Research, 2012, 5, 137-147.	2.1	54
12	Case-control and family-based association studies of candidate genes in autistic disorder and its endophenotypes: TPH2 and GLO1. BMC Medical Genetics, 2007, 8, 11.	2.1	51
13	Slow intestinal transit contributes to elevate urinary <i>p</i> autistic children. Autism Research, 2016, 9, 752-759.	2.1	51
14	Dissociative Trance Disorder: Clinical and Rorschach Findings in Ten Persons Reporting Demon Possession and Treated by Exorcism. Journal of Personality Assessment, 1996, 66, 525-539.	1.3	49
15	Converging Evidence for an Association of ATP2B2 Allelic Variants with Autism in Male Subjects. Biological Psychiatry, 2011, 70, 880-887.	0.7	49
16	Family-based association study of ITGB3 in autism spectrum disorder and its endophenotypes. European Journal of Human Genetics, 2011, 19, 353-359.	1.4	45
17	Association of autism with polyomavirus infection in postmortem brains. Journal of NeuroVirology, 2010, 16, 141-149.	1.0	42
18	Recurrent 15q11.2 BP1â€BP2 microdeletions and microduplications in the etiology of neurodevelopmental disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 1088-1098.	1.1	41

#	Article	lF	Citations
19	Age-Related Changes to Human Tear Composition. , 2018, 59, 2024.		38
20	Phenotypic spectrum of <i>NRXN1</i> mono―and bi―allelic deficiency: A systematic review. Clinical Genetics, 2020, 97, 125-137.	1.0	38
21	Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects. Journal of Neurodevelopmental Disorders, 2016, 8, 18.	1.5	35
22	Decreased serum arylesterase activity in autism spectrum disorders. Psychiatry Research, 2010, 180, 105-113.	1.7	33
23	HOXA1gene variants influence head growth rates in humans. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 388-390.	1.1	26
24	The GLO1 C332 (Ala111) allele confers autism vulnerability: Family-based genetic association and functional correlates. Journal of Psychiatric Research, 2014, 59, 108-116.	1.5	19
25	Age- and gender-specific epistasis between ADA and TNF- \hat{l}_{\pm} influences human life-expectancy. Cytokine, 2011, 56, 481-488.	1.4	17
26	Xp22.33p22.12 Duplication in a Patient with Intellectual Disability and Dysmorphic Facial Features. Molecular Syndromology, 2015, 6, 236-241.	0.3	10
27	Evidence that ITGB3 promoter variants increase serotonin blood levels by regulating platelet serotonin transporter trafficking. Human Molecular Genetics, 2019, 28, 1153-1161.	1.4	10
28	FARPâ€1 deletion is associated with lack of response to autism treatment by early start denver model in a multiplex family. Molecular Genetics & Enomic Medicine, 2020, 8, e1373.	0.6	10
29	Candidate gene study of HOXB1 in autism spectrum disorder. Molecular Autism, 2010, 1, 9.	2.6	8
30	Endophenotypes in Autism Spectrum Disorders. , 2014, , 77-95.		8
31	Copy number variation in 19 Italian multiplex families with autism spectrum disorder: Importance of synaptic and neurite elongation genes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 547-556.	1.1	7
32	Huntingtin gene CAG repeat size affects autism risk: Familyâ€based and case–control association study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 341-351.	1.1	5
33	Reevaluation of Serum Arylesterase Activity in Neurodevelopmental Disorders. Antioxidants, 2021, 10, 164.	2.2	5
34	Efficacy and Safety of Q10 Ubiquinol With Vitamins B and E in Neurodevelopmental Disorders: A Retrospective Chart Review. Frontiers in Psychiatry, 2022, 13, 829516.	1.3	5
35	Appropriateness of array GH in the ADHD clinics: A comparative study. Genes, Brain and Behavior, 2020, 19, e12651.	1.1	4
36	An Interstitial 17q11.2 de novo Deletion Involving the CDK5R1 Gene in a High-Functioning Autistic Patient. Molecular Syndromology, 2018, 9, 247-252.	0.3	2

ROBERTO SACCO

#	Article	IF	CITATIONS
37	Genome-Wide Expression Studies in Autism-Spectrum Disorders: Moving from Neurodevelopment to Neuroimmunology. Advances in Neurobiology, 2011, , 469-487.	1.3	2
38	Autism genetics: Methodological issues and experimental design. Science China Life Sciences, 2015, 58, 946-957.	2.3	1