MichaÅ, Szumski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8679071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of zeta potential value on bacterial behavior during electrophoretic separation. Electrophoresis, 2010, 31, 1590-1596.	2.4	187
2	A study of surface modification and anchoring techniques used in the preparation of monolithic microcolumns in fused silica capillaries. Journal of Separation Science, 2006, 29, 14-24.	2.5	91
3	Separation of bacteria by capillary electrophoresis. Journal of Separation Science, 2003, 26, 1045-1049.	2.5	86
4	State of the Art in Miniaturized Separation Techniques. Critical Reviews in Analytical Chemistry, 2002, 32, 1-46.	3.5	84
5	Microfluidic reactors with immobilized enzymes—Characterization, dividing, perspectives. Sensors and Actuators B: Chemical, 2017, 244, 84-106.	7.8	74
6	Separation of microorganisms using electromigration techniques. Journal of Chromatography A, 2005, 1084, 186-193.	3.7	72
7	Assessing the Macroporous Structure of Monolithic Columns by Transmission Electron Microscopy. Analytical Chemistry, 2007, 79, 335-344.	6.5	64
8	Atom-Transfer Radical Graft Polymerization Initiated Directly from Silica Applied to Functionalization of Stationary Phases for High-Performance Liquid Chromatography in the Hydrophilic Interaction Chromatography Mode. Analytical Chemistry, 2006, 78, 7098-7103.	6.5	62
9	Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins. Journal of Chromatography A, 2014, 1364, 163-170.	3.7	49
10	Molecularly imprinted polymers: A new tool for separation of steroid isomers. Journal of Separation Science, 2004, 27, 837-842.	2.5	46
11	Differentiation of Staphylococcus aureus strains by CE, zeta potential and coagulase gene polymorphism. Electrophoresis, 2009, 30, 3086-3091.	2.4	40
12	Alkylated poly(styreneâ€divinylbenzene) monolithic columns for μâ€HPLC and CEC separation of phenolic acids. Journal of Separation Science, 2007, 30, 3018-3026.	2.5	38
13	Preparation and evaluation of dual-enzyme microreactor with co-immobilized trypsin and chymotrypsin. Journal of Chromatography A, 2016, 1440, 45-54.	3.7	36
14	Coupling of solidâ€phase microextraction continuous bed (monolithic) capillaries with capillary zone electrophoresis for direct analysis of drugs in biological fluids. Electrophoresis, 2008, 29, 1753-1760.	2.4	34
15	Study of Bed Homogenity of Methacrylate-Based Monolithic Columns for Micro-HPLC and CEC. Chromatographia, 2004, 60, .	1.3	33
16	Preparation and application of monolithic beds in the separation of selected natural biologically important compounds. Journal of Separation Science, 2007, 30, 55-66.	2.5	25
17	Supramolecular recognition of estrogens via molecularly imprinted polymers. Analytical and Bioanalytical Chemistry, 2010, 397, 2977-2986.	3.7	24
18	Effect of temperature during photopolymerization of capillary monolithic columns. Journal of Separation Science, 2009, 32, 2574-2581.	2.5	22

МіснаÅ, Szumski

#	Article	IF	CITATIONS
19	Application of a fluorescence stereomicroscope as an in-line detection unit for electrophoretic separation of bacteria. Mikrochimica Acta, 2009, 164, 287-291.	5.0	22
20	Preparation of an improved hydrophilic monolith to make trypsin-immobilized microreactors. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1043, 128-137.	2.3	20
21	Determination of volatile and nonâ€volatile products of milk fermentation processes using capillary zone electrophoresis and solid phase microextraction coupled to gas chromatography. Journal of Separation Science, 2008, 31, 2707-2713.	2.5	18
22	Migration of bacteria through a monolith. Journal of Chromatography A, 2009, 1216, 6146-6150.	3.7	17
23	Cholesterol-based polymeric monolithic columns for capillary liquid chromatography. Journal of Chromatography A, 2014, 1373, 114-123.	3.7	13
24	Application of a cholesterol stationary phase in the analysis of phosphorothioate oligonucleotides by means of ion pair chromatography coupled with tandem mass spectrometry. Talanta, 2016, 154, 270-277.	5.5	13
25	Hypercrosslinked cholesterol-based polystyrene monolithic capillary columns. Journal of Chromatography A, 2016, 1477, 11-21.	3.7	13
26	Study of electroosmotic flow in packed capillary columns. Journal of Chromatography A, 2004, 1032, 141-148.	3.7	12
27	Considerations on influence of charge distribution on determination of biomolecules and microorganisms and tailoring the monolithic (continuous bed) materials for bioseparations. Journal of Proteomics, 2007, 70, 107-115.	2.4	11
28	How much separation sciences fit in the green chemistry canoe?. Current Opinion in Green and Sustainable Chemistry, 2021, 30, 100495.	5.9	11
29	Determination of Biotin in Pharmaceutical Preparation by Means of HPLC and/or MEKC. Journal of Liquid Chromatography and Related Technologies, 2003, 26, 195-205.	1.0	10
30	EOF in monolithic poly(styreneâ€ <i>co</i> â€divinylbenzene) capillary columns. Electrophoresis, 2009, 30, 583-588.	2.4	9
31	Preparation of Monolithic Capillary Chromatographic Columns Using Supercritical Fluid as a Porogen Solvent. Chromatographia, 2014, 77, 1009-1017.	1.3	8
32	Polymer monoliths with silver nanoparticles-cholesterol conjugate as stationary phases for capillary liquid chromatography. Journal of Chromatography A, 2017, 1526, 93-103.	3.7	8
33	EFFECT OF APPLIED VOLTAGE ON VIABILITY OF BACTERIA DURING SEPARATION UNDER ELECTROPHORETIC CONDITIONS. Journal of Liquid Chromatography and Related Technologies, 2011, 34, 2689-2698.	1.0	7
34	Cholesterol-based polymeric monolithic columns for capillary liquid chromatography. Part II. Journal of Chromatography A, 2015, 1408, 145-150.	3.7	7
35	Analysis of Natural Dyes from Historical Objects by High Performance Liquid Chromatography and Electromigration Techniques. Critical Reviews in Analytical Chemistry, 2021, 51, 1-34.	3.5	7
36	CEâ€DADâ€MS/MS in the simultaneous determination and identification of selected antibiotic drugs and their metabolites in human urine samples. Electrophoresis, 2021, , .	2.4	4

#	Article	IF	CITATIONS
37	Synthesis and application of stationary phase for DNA-affinity chromatographic analysis of unmodified and antisense oligonucleotide. Analytical and Bioanalytical Chemistry, 2021, 413, 5109-5119.	3.7	3
38	Electrochromatographic Methods: Capillary Electrochromatograpy. Springer Series in Chemical Physics, 2013, , 159-189.	0.2	0
39	Nowe podejście w oznaczaniu i identyfikacji mikroorganizmów. , 2010, , .		0
40	Miniaturization in Separation Techniques. , 2022, , 709-727.		0

Miniaturization in Separation Techniques. , 2022, , 709-727. 40