
Takashi Hosokawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8678282/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>ONE HUNDRED FIRST STARS</i> : PROTOSTELLAR EVOLUTION AND THE FINAL MASSES. Astrophysical Journal, 2014, 781, 60.	4.5	415
2	Protostellar Feedback Halts the Growth of the First Stars in the Universe. Science, 2011, 334, 1250-1253.	12.6	315
3	EVOLUTION OF MASSIVE PROTOSTARS WITH HIGH ACCRETION RATES. Astrophysical Journal, 2009, 691, 823-846.	4.5	309
4	FORMATION OF PRIMORDIAL SUPERMASSIVE STARS BY RAPID MASS ACCRETION. Astrophysical Journal, 2013, 778, 178.	4.5	201
5	EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION. Astrophysical Journal, 2010, 721, 478-492.	4.5	184
6	FORMATION OF MASSIVE PRIMORDIAL STARS: INTERMITTENT UV FEEDBACK WITH EPISODIC MASS ACCRETION. Astrophysical Journal, 2016, 824, 119.	4.5	169
7	The formation and destruction of molecular clouds and galactic star formation. Astronomy and Astrophysics, 2015, 580, A49.	5.1	160
8	RAPIDLY ACCRETING SUPERGIANT PROTOSTARS: EMBRYOS OF SUPERMASSIVE BLACK HOLES?. Astrophysical Journal, 2012, 756, 93.	4.5	136
9	Dynamical Expansion of Ionization and Dissociation Front around a Massive Star. II. On the Generality of Triggered Star Formation. Astrophysical Journal, 2006, 646, 240-257.	4.5	133
10	The Red MSX Source survey: critical tests of accretion models for the formation of massive stars. Monthly Notices of the Royal Astronomical Society, 2011, 416, 972-990.	4.4	119
11	ON THE RELIABILITY OF STELLAR AGES AND AGE SPREADS INFERRED FROM PRE-MAIN-SEQUENCE EVOLUTIONARY MODELS. Astrophysical Journal, 2011, 738, 140.	4.5	118
12	Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	114
13	Evolution of protostellar outflow around low-mass protostar. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1719-1744.	4.4	103
14	Supersonic gas streams enhance the formation of massive black holes in the early universe. Science, 2017, 357, 1375-1378.	12.6	99
15	LOW-METALLICITY STAR FORMATION: PRESTELLAR COLLAPSE AND PROTOSTELLAR ACCRETION IN THE SPHERICAL SYMMETRY. Astrophysical Journal, 2010, 722, 1793-1815.	4.5	88
16	THE FINAL FATES OF ACCRETING SUPERMASSIVE STARS. Astrophysical Journal Letters, 2016, 830, L34.	8.3	84
17	The Birth of a Massive First-star Binary. Astrophysical Journal Letters, 2020, 892, L14.	8.3	84
18	Grand-design Spiral Arms in a Young Forming Circumstellar Disk. Astrophysical Journal Letters, 2017, 835, L11.	8.3	78

ΤΑΚΑSΗΙ ΗΟSOKAWA

#	Article	IF	CITATIONS
19	COSMOLOGICAL SIMULATIONS OF EARLY BLACK HOLE FORMATION: HALO MERGERS, TIDAL DISRUPTION, AND THE CONDITIONS FOR DIRECT COLLAPSE. Astrophysical Journal, 2016, 832, 134.	4.5	70
20	Dynamical Expansion of Ionization and Dissociation Fronts around a Massive Star. I. A Mode of Triggered Star Formation. Astrophysical Journal, 2005, 623, 917-921.	4.5	67
21	PROTOSTELLAR FEEDBACK AND FINAL MASS OF THE SECOND-GENERATION PRIMORDIAL STARS. Astrophysical Journal Letters, 2012, 760, L37.	8.3	56
22	Radiation hydrodynamics simulations of the formation of direct-collapse supermassive stellar systems. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4104-4121.	4.4	52
23	Radiation Hydrodynamics Simulations of Photoevaporation of Protoplanetary Disks by Ultraviolet Radiation: Metallicity Dependence. Astrophysical Journal, 2018, 857, 57.	4.5	51
24	DIRECT DIAGNOSTICS OF FORMING MASSIVE STARS: STELLAR PULSATION AND PERIODIC VARIABILITY OF MASER SOURCES. Astrophysical Journal Letters, 2013, 769, L20.	8.3	48
25	Variable accretion rates and fluffy first stars. Monthly Notices of the Royal Astronomical Society, 2012, 424, 457-463.	4.4	47
26	Radiation Hydrodynamics Simulations of Photoevaporation of Protoplanetary Disks. II. Metallicity Dependence of UV and X-Ray Photoevaporation. Astrophysical Journal, 2018, 865, 75.	4.5	46
27	Massive outflows driven by magnetic effects in star-forming clouds with high mass accretion rates. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1026-1049.	4.4	45
28	RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. III. THE EVOLUTIONARY SEQUENCE. Astrophysical Journal, 2014, 788, 166.	4.5	40
29	LOW-METALLICITY PROTOSTARS AND THE MAXIMUM STELLAR MASS RESULTING FROM RADIATIVE FEEDBACK: SPHERICALLY SYMMETRIC CALCULATIONS. Astrophysical Journal, 2009, 703, 1810-1818.	4.5	37
30	Star cluster formation and cloud dispersal by radiative feedback: dependence on metallicity and compactness. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3830-3845.	4.4	36
31	Rapid black hole growth under anisotropic radiation feedback. Monthly Notices of the Royal Astronomical Society, 2017, 469, 62-79.	4.4	34
32	Pulsational instability of supergiant protostars: do they grow supermassive by accretion?. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3036-3044.	4.4	33
33	Stunted accretion growth of black holes by combined effect of the flow angular momentum and radiation feedback. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3961-3975.	4.4	30
34	Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs. Astronomy and Astrophysics, 2017, 605, A77.	5.1	26
35	Dynamical Expansion of Ionization and Dissociation Front around a Massive Star: A Starburst Mechanism. Astrophysical Journal, 2006, 648, L131-L134.	4.5	25
36	Warm CO Gas Generated by Possible Turbulent Shocks in a Low-mass Star-forming Dense Core in Taurus. Astrophysical Journal, 2018, 862, 8.	4.5	25

ΤΑΚΑSΗΙ ΗΟSOKAWA

#	Article	IF	CITATIONS
37	Forming Pop III binaries in self-gravitating discs: how to keep the orbital angular momentum. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2658-2672.	4.4	25
38	Super-Eddington accretion of dusty gas onto seed black holes: metallicity-dependent efficiency of mass growth. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	23
39	Merger Rate Density of Binary Black Holes through Isolated Population I, II, III and Extremely Metal-poor Binary Star Evolution. Astrophysical Journal, 2022, 926, 83.	4.5	23
40	The Impact of Feedback in Massive Star Formation. II. Lower Star Formation Efficiency at Lower Metallicity. Astrophysical Journal, 2018, 861, 68.	4.5	22
41	Gaseous dynamical friction under radiative feedback: do intermediate-mass black holes speed up or down?. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1909-1921.	4.4	21
42	Failed and delayed protostellar outflows with high-mass accretion rates. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4490-4514.	4.4	21
43	Star formation triggered by supernova explosions in young galaxies. Monthly Notices of the Royal Astronomical Society, 2009, 399, 2183-2194.	4.4	20
44	Massive outflows driven by magnetic effects – II. Comparison with observations. Monthly Notices of the Royal Astronomical Society, 2018, 475, 391-403.	4.4	20
45	Episodic excursions of low-mass protostars on the Hertzsprung–Russell diagram. Monthly Notices of the Royal Astronomical Society, 2019, 484, 146-160.	4.4	20
46	Upper stellar mass limit by radiative feedback at low-metallicities: metallicity and accretion rate dependence. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4754-4772.	4.4	18
47	Formation of massive stars under protostellar radiation feedback: very metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2020, 497, 829-845.	4.4	17
48	Super-Eddington Mass Growth of Intermediate-mass Black Holes Embedded in Dusty Circumnuclear Disks. Astrophysical Journal, 2021, 907, 74.	4.5	17
49	Rapid Growth of Seed Black Holes during Early Bulge Formation. Astrophysical Journal, 2022, 927, 237.	4.5	16
50	A Detached Protostellar Disk around a â^1⁄40.2 M _⊙ Protostar in a Possible Site of a Multiple Star Formation in a Dynamical Environment in Taurus. Astrophysical Journal, 2017, 849, 101.	4.5	15
51	Dynamical Formation of Dark Molecular Hydrogen Clouds around Diffuse HiiRegions. Astrophysical Journal, 2007, 664, 363-376.	4.5	14
52	GENERATION OF MAGNETIC FIELD ON THE ACCRETION DISK AROUND A PROTO-FIRST-STAR. Astrophysical Journal, 2014, 782, 108.	4.5	14
53	Cosmological direct-collapse black hole formation sites hostile for their growth. Monthly Notices of the Royal Astronomical Society, 2021, 502, 700-713.	4.4	13
54	The Relation between Mid-Infrared Emission and Black Hole Mass in Active Galactic Nuclei: A Direct Way to Probe Black Hole Growth?. Astrophysical Journal, 2002, 571, L1-L5.	4.5	13

ΤΑΚΑSΗΙ ΗΟSOKAWA

#	Article	IF	CITATIONS
55	Growth of Massive Disks and Early Disk Fragmentation in Primordial Star Formation. Astrophysical Journal, 2021, 911, 52.	4.5	12
56	Constraining the Lifetime of Quasars with the Presentâ€Đay Mass Function of Supermassive Black Holes. Astrophysical Journal, 2002, 576, 75-80.	4.5	11
57	Do stellar winds prevent the formation of supermassive stars by accretion?. Monthly Notices of the Royal Astronomical Society, 2017, 465, 5016-5025.	4.4	10
58	Accretion bursts in low-metallicity protostellar disks. Astronomy and Astrophysics, 2020, 641, A72.	5.1	10
59	Gravitational-Wave Radiation from Magnetized Accretion Disks. Publication of the Astronomical Society of Japan, 2002, 54, 655-660.	2.5	9
60	Factories of CO-dark gas: molecular clouds with limited star formation efficiencies by far-ultraviolet feedback. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5061-5075.	4.4	8
61	Disc fragmentation and intermittent accretion on to supermassive stars. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4126-4138.	4.4	7
62	Theoretical Models of Multi-Waveband QSO Luminosity Functions. Publication of the Astronomical Society of Japan, 2001, 53, 861-870.	2.5	6
63	Gravitational fragmentation of extremely metal-poor circumstellar discs. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4767-4785.	4.4	6
64	FLUX MONITORING OF 6.7 GHz METHANOL MASER TO SYSTEMATICALLY RESEARCH PERIODIC VARIATIONS USING THE HITACHI 32-m. Publications of the Korean Astronomical Society, 2015, 30, 129-131.	0.0	6
65	Cosmological Growth History of Supermassive Black Holes and Demographics in the Highâ€∉Universe: Do Lyman Break Galaxies Have Supermassive Black Holes?. Astrophysical Journal, 2004, 606, 139-150.	4.5	5
66	Impact of magnetic braking on high-mass close binary formation. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3730-3747.	4.4	5
67	Gravitational Wave Physics and Astronomy in the nascent era. Progress of Theoretical and Experimental Physics, 0, , .	6.6	3
68	Evolution and final fates of rapidly accreting supermassive stars. , 2019, , 145-159.		3
69	Spectral energy distribution of the first galaxies: contribution from pre-main-sequence stars. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 488, L64-L68.	3.3	1
70	Mass Accretion Process to the Forming First Star. , 2010, , .		0
71	The Formation and Destruction of Molecular Clouds and Galactic Star Formation. Proceedings of the International Astronomical Union, 2015, 11, 61-68.	0.0	0
72	Multiple Feedback in Low-Metallicity Massive Star Formation. Proceedings of the International Astronomical Union, 2018, 14, 190-194.	0.0	0

#	Article	IF	CITATIONS
73	First galaxy SED: Contribution from pre-main-sequence stars. Proceedings of the International Astronomical Union, 2019, 15, 287-288.	0.0	0