Andreas Zimmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8678127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genetics, 2000, 25, 444-447.	21.4	658
2	Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 7-22.	4.3	427
3	Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nature Medicine, 1998, 4, 619-622.	30.7	407
4	A practical note on the use of cytotoxicity assays. International Journal of Pharmaceutics, 2005, 288, 369-376.	5.2	394
5	Microspheres and nanoparticles used in ocular delivery systems. Advanced Drug Delivery Reviews, 1995, 16, 61-73.	13.7	298
6	Internalization mechanisms of cell-penetrating peptides. Beilstein Journal of Nanotechnology, 2020, 11, 101-123.	2.8	262
7	Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 8-20.	3.3	206
8	Drug delivery and drug targeting with parenteral lipid nanoemulsions — A review. Journal of Controlled Release, 2016, 223, 85-98.	9.9	193
9	Development of an Itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. International Journal of Pharmaceutics, 2011, 419, 329-338.	5.2	180
10	Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nature Methods, 2005, 2, 403-404.	19.0	176
11	Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. International Journal of Pharmaceutics, 2011, 420, 93-100.	5.2	162
12	Glycerol monooleate liquid crystalline phases used in drug delivery systems. International Journal of Pharmaceutics, 2015, 478, 569-587.	5.2	146
13	Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nature Genetics, 2015, 47, 969-978.	21.4	137
14	Development of an Advanced Intestinal in Vitro Triple Culture Permeability Model To Study Transport of Nanoparticles. Molecular Pharmaceutics, 2014, 11, 808-818.	4.6	131
15	Geriatric drug therapy: Neglecting the inevitable majority. Ageing Research Reviews, 2010, 9, 384-398.	10.9	128
16	Mouse phenotyping. Methods, 2011, 53, 120-135.	3.8	128
17	Drug delivery of oligonucleotides by peptides. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 237-251.	4.3	100
18	Cytotoxicity of nanoparticles independent from oxidative stress. Journal of Toxicological Sciences, 2009. 34. 363-375.	1.5	99

#	Article	IF	CITATIONS
19	Studies on the transport pathway of PBCA nanoparticles in ocular tissues. Journal of Microencapsulation, 1991, 8, 497-504.	2.8	98
20	The patched signaling pathway in tumorigenesis and development: lessons from animal models. Journal of Molecular Medicine, 1999, 77, 459-468.	3.9	98
21	Apolipoprotein A-I coating of protamine–oligonucleotide nanoparticles increases particle uptake and transcytosis in an in vitro model of the blood–brain barrier. Journal of Controlled Release, 2007, 117, 301-311.	9.9	97
22	Cardiovascular Effects of 2-Arachidonoyl Glycerol in Anesthetized Mice. Hypertension, 2000, 35, 679-684.	2.7	96
23	The oral cavity as a biological barrier system: Design of an advanced buccal in vitro permeability model. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 386-393.	4.3	89
24	Evaluation of a physiological <i>in vitro</i> system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology, 2012, 6, 399-413.	3.0	87
25	Albumin–protamine–oligonucleotide nanoparticles as a new antisense delivery system. Part 1: Physicochemical characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 419-429.	4.3	71
26	Solvent-Free Melting Techniques for the Preparation of Lipid-Based Solid Oral Formulations. Pharmaceutical Research, 2015, 32, 1519-1545.	3.5	68
27	Microemulsions containing lecithin and sugar-based surfactants: Nanoparticle templates for delivery of proteins and peptides. International Journal of Pharmaceutics, 2008, 350, 351-360.	5.2	67
28	Development of sustained-release lipophilic calcium stearate pellets via hot melt extrusion. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 635-645.	4.3	64
29	Albumin–protamine–oligonucleotide-nanoparticles as a new antisense delivery system. Part 2: cellular uptake and effect. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 431-438.	4.3	54
30	Protamine nanoparticles with CpG-oligodeoxynucleotide prevent an allergen-induced Th2-response in BALB/c mice. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 656-664.	4.3	53
31	Comparison of antisense oligonucleotide drug delivery systems. Journal of Controlled Release, 2004, 100, 411-423.	9.9	51
32	Inâ€Vitro Permeability of Neutral Polystyrene Particles via Buccal Mucosa. Small, 2013, 9, 457-466.	10.0	51
33	Pharmacokinetic and pharmacodynamic aspects of an ophthalmic pilocarpine nanoparticle-delivery-system. Pharmaceutical Research, 1994, 11, 1435-1442.	3.5	50
34	Itraconazole-loaded nanostructured lipid carriers (NLC) for pulmonary treatment of aspergillosis in falcons. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 269-276.	4.3	50
35	Recombinant Virus Like Particles as Drug Delivery System. Current Pharmaceutical Biotechnology, 2005, 6, 49-55.	1.6	47
36	The buccal mucosa as a route for TiO ₂ nanoparticle uptake. Nanotoxicology, 2015, 9, 253-261.	3.0	45

#	Article	IF	CITATIONS
37	Interactions between nano-TiO2 and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity. Journal of Hazardous Materials, 2015, 286, 298-305.	12.4	43
38	Antisense Oligonucleotide Delivery with Polyhexylcyanoacrylate Nanoparticles as Carriers. Methods, 1999, 18, 286-295.	3.8	42
39	Intracellular tracking of protamine/antisense oligonucleotide nanoparticles and their inhibitory effect on HIV-1 transactivation. Journal of Controlled Release, 2004, 96, 497-507.	9.9	42
40	Protamine–oligonucleotide-nanoparticles: Recent advances in drug delivery and drug targeting. European Journal of Pharmaceutical Sciences, 2015, 75, 54-59.	4.0	42
41	Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles. Journal of Controlled Release, 2008, 130, 192-198.	9.9	41
42	Lipoprotein-Related and Apolipoprotein-Mediated Delivery Systems for Drug Targeting and Imaging. Current Medicinal Chemistry, 2015, 22, 3631-3651.	2.4	41
43	Use of Protamine in Nanopharmaceuticals—A Review. Nanomaterials, 2021, 11, 1508.	4.1	41
44	Innovations in phenotyping of mouse models in the German Mouse Clinic. Mammalian Genome, 2012, 23, 611-622.	2.2	40
45	Phosphodiester and phosphorothioate oligonucleotide condensation and preparation of antisense nanoparticles. BBA - Proteins and Proteomics, 2001, 1544, 177-188.	2.1	39
46	Immunostimulatory Properties of CpG-Oligonucleotides Are Enhanced by the Use of Protamine Nanoparticles. Oligonucleotides, 2006, 16, 313-322.	2.7	38
47	Oligonucleotide–protamine–albumin nanoparticles: preparation, physical properties, and intracellular distribution. Journal of Controlled Release, 2005, 103, 99-111.	9.9	37
48	UV light induced photodegradation of liposome encapsulated fluoroquinolones: An MS study. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 268-273.	3.9	37
49	Protein kinase D2 regulates migration and invasion of U87MG glioblastoma cells in vitro. Experimental Cell Research, 2013, 319, 2037-2048.	2.6	37
50	High Mobility Group N Proteins Modulate the Fidelity of the Cellular Transcriptional Profile in a Tissue- and Variant-specific Manner. Journal of Biological Chemistry, 2013, 288, 16690-16703.	3.4	37
51	Permeation of Therapeutic Drugs in Different Formulations across the Airway Epithelium In Vitro. PLoS ONE, 2015, 10, e0135690.	2.5	34
52	Differential scanning fluorescence approach using a fluorescent molecular rotor to detect thermostability of proteins in surfactant-containing formulations. International Journal of Pharmaceutics, 2013, 441, 255-260.	5.2	33
53	Oligonucleotide-protamine-albumin nanoparticles: Protamine sulfate causes drastic size reduction. Journal of Controlled Release, 2005, 106, 181-187.	9.9	32
54	Interference with distinct steps of sphingolipid synthesis and signaling attenuates proliferation of U87MG glioma cells. Biochemical Pharmacology, 2015, 96, 119-130.	4.4	31

#	Article	IF	CITATIONS
55	Understanding gene functions and disease mechanisms: Phenotyping pipelines in the German Mouse Clinic. Behavioural Brain Research, 2018, 352, 187-196.	2.2	31
56	New protamine quantification method in microtiter plates using o-phthaldialdehyde/N-acetyl-l-cysteine reagent. International Journal of Pharmaceutics, 2004, 283, 11-17.	5.2	27
57	Cationic lipid–protamine–DNA (LPD) complexes for delivery of antisense c-myc oligonucleotides. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 60, 287-294.	4.3	27
58	Physicochemical characterization of protamine-phosphorothioate nanoparticles. Journal of Microencapsulation, 2004, 21, 625-641.	2.8	26
59	Studies on molecular interactions between nalidixic acid and liposomes. International Journal of Pharmaceutics, 2004, 279, 67-79.	5.2	26
60	Nanoparticle-Mediated Treatment of Pulmonary Arterial Hypertension. Methods in Enzymology, 2012, 508, 325-354.	1.0	25
61	Microphase separation in solid lipid dosage forms as the cause of drug release instability. International Journal of Pharmaceutics, 2017, 517, 403-412.	5.2	25
62	VPAC receptor mediated tumor cell targeting by protamine based nanoparticles. Journal of Drug Targeting, 2010, 18, 457-467.	4.4	24
63	Thinking continuously: a microreactor for the production and scale-up of biodegradable, self-assembled nanoparticles. Polymer Chemistry, 2013, 4, 2342.	3.9	23
64	Enhanced antisense efficacy of oligonucleotides adsorbed to monomethylaminoethylmethacrylate methylmethacrylate copolymer nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 49, 203-210.	4.3	22
65	Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1132-1141.	2.4	22
66	Designing optimal formulations for hot-melt coating. International Journal of Pharmaceutics, 2017, 533, 357-363.	5.2	22
67	Role of Lipid Blooming and Crystallite Size in the Performance of Highly Soluble Drug-Loaded Microcapsules. Journal of Pharmaceutical Sciences, 2015, 104, 4257-4265.	3.3	21
68	Advanced stable lipid-based formulations for a patient-centric product design. International Journal of Pharmaceutics, 2016, 497, 136-149.	5.2	21
69	Development of lipophilic calcium stearate pellets using ibuprofen as model drug. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75, 56-62.	4.3	20
70	Adiponectin-coated nanoparticles for enhanced imaging of atherosclerotic plaques. International Journal of Nanomedicine, 2011, 6, 1279.	6.7	20
71	Wiring Specificity and Synaptic Diversity in the Mouse Lateral Central Amygdala. Journal of Neuroscience, 2016, 36, 4549-4563.	3.6	20
72	Physicochemical characterisation of cationic polybutylcyanoacrylat-nanoparticles by fluorescence correlation spectroscopy. European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58, 25-35.	4.3	18

#	Article	IF	CITATIONS
73	Evaluation of aminoalkylmethacrylate nanoparticles as colloidal drug carrier systems. Part I: synthesis of monomers, dependence of the physical properties on the polymerization methods. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 47, 203-213.	4.3	17
74	Atomic force microscopy as analytical tool to study physico-mechanical properties of intestinal cells. Beilstein Journal of Nanotechnology, 2015, 6, 1457-1466.	2.8	17
75	Optimization and design of an ibuprofen-loaded nanostructured lipid carrier with a 23 full factorial design. Chemical Engineering Research and Design, 2015, 104, 488-496.	5.6	17
76	Synthesis of cholesterol modified cationic lipids for liposomal drug delivery of antisense oligonucleotides. European Journal of Pharmaceutics and Biopharmaceutics, 1999, 47, 175-178.	4.3	16
77	Physicochemical characterization of stealth liposomes encapsulating an organophosphate hydrolyzing enzyme. Journal of Liposome Research, 2009, 19, 163-168.	3.3	16
78	lbuprofen-Loaded Calcium Stearate Pellets: Drying-Induced Variations in Dosage Form Properties. AAPS PharmSciTech, 2012, 13, 686-698.	3.3	16
79	Formation of a physical stable delivery system by simply autoclaving nanostructured lipid carriers (NLC). International Journal of Pharmaceutics, 2012, 439, 22-27.	5.2	16
80	Morphologies in Solvent-Annealed Clotrimazole Thin Films Explained by Hansen-Solubility Parameters. Crystal Growth and Design, 2014, 14, 1386-1391.	3.0	16
81	<p>Biological Activity Of miRNA-27a Using Peptide-based Drug Delivery Systems</p> . International Journal of Nanomedicine, 2019, Volume 14, 7795-7808.	6.7	16
82	Evaluating the effects of buffer conditions and extremolytes on thermostability of granulocyte colony-stimulating factor using high-throughput screening combined with design of experiments. International Journal of Pharmaceutics, 2012, 436, 744-752.	5.2	15
83	Vancomycin ocular delivery systems based on glycerol monooleate reversed hexagonal and reversed cubic liquid crystalline phases. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 279-290.	4.3	15
84	Crystallization of Carbamazepine in Proximity to Its Precursor Iminostilbene and a Silica Surface. Crystal Growth and Design, 2016, 16, 2771-2778.	3.0	12
85	Reformulation of a codeine phosphate liquid controlled-release product. Drug Development and Industrial Pharmacy, 2010, 36, 1454-1462.	2.0	11
86	Clinical Potential of VIP by Modified Pharmaco-kinetics and Delivery Mechanisms. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2012, 12, 344-350.	1.2	11
87	Interleukin 10-coated nanoparticle systems compared for molecular imaging of atherosclerotic lesions. International Journal of Nanomedicine, 2014, 9, 4211.	6.7	11
88	Morphologies of Phenytoin Crystals at Silica Model Surfaces: Vapor Annealing versus Drop Casting. Journal of Physical Chemistry C, 2014, 118, 12855-12861.	3.1	11
89	In vitro release of propofol and binding capacity with regard to plasma constituents. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 882-888.	4.3	10
90	Modeling and simulation of polyacrylic acid/protamine nanoparticle precipitation. Soft Matter, 2011, 7, 9484.	2.7	10

#	Article	IF	CITATIONS
91	Complex Behavior of Caffeine Crystallites on Muscovite Mica Surfaces. Crystal Growth and Design, 2015, 15, 4563-4570.	3.0	10
92	Improving the granule strength of roller-compacted ibuprofen sodium for hot-melt coating processing. International Journal of Pharmaceutics, 2016, 510, 285-295.	5.2	10
93	Application of ICH Q9 Quality Risk Management Tools for Advanced Development of Hot Melt Coated Multiparticulate Systems. Journal of Pharmaceutical Sciences, 2017, 106, 278-290.	3.3	10
94	Correlation between the solid state of lipid coating and release profile of API from hot melt coated microcapsules. International Journal of Pharmaceutics, 2019, 565, 569-578.	5.2	10
95	Monoglyceride lipase deficiency affects hepatic cholesterol metabolism and lipid-dependent gut transit in ApoEâ^'/â^' mice. Oncotarget, 2017, 8, 33122-33136.	1.8	10
96	Effect of protamine on the solubility and deamidation of human growth hormone. International Journal of Pharmaceutics, 2012, 427, 209-216.	5.2	9
97	Crystallographic Textures and Morphologies of Solution Cast Ibuprofen Composite Films at Solid Surfaces. Molecular Pharmaceutics, 2014, 11, 4084-4091.	4.6	9
98	A Protocol To Characterize Peptide-Based Drug Delivery Systems for miRNAs. ACS Omega, 2019, 4, 7014-7022.	3.5	9
99	The First Scube3 Mutant Mouse Line with Pleiotropic Phenotypic Alterations. G3: Genes, Genomes, Genetics, 2016, 6, 4035-4046.	1.8	9
100	One Polymorph and Various Morphologies of Phenytoin at a Silica Surface Due to Preparation Kinetics. Crystal Growth and Design, 2015, 15, 326-332.	3.0	8
101	Solvent Vapor Annealing of Amorphous Carbamazepine Films for Fast Polymorph Screening and Dissolution Alteration. ACS Omega, 2017, 2, 5582-5590.	3.5	8
102	Monitoring of a Hot Melt Coating Process via a Novel Multipoint Near-Infrared Spectrometer. AAPS PharmSciTech, 2017, 18, 182-193.	3.3	8
103	Comparison of PEGylated and non-PEGylated proticles: An in vitro and in vivo study. European Journal of Pharmaceutical Sciences, 2019, 139, 105063.	4.0	8
104	Intestine-specific DGAT1 deficiency improves atherosclerosis in apolipoprotein E knockout mice by reducing systemic cholesterol burden. Atherosclerosis, 2020, 310, 26-36.	0.8	8
105	Fluorescence Correlation Spectroscopy for the Characterisation of Drug Delivery Systems. Biological Chemistry, 2001, 382, 487-90.	2.5	7
106	Use of the Direct Compression Aid Ludiflash®for the preparation of pellets via wet extrusion/spheronization. Drug Development and Industrial Pharmacy, 2011, 37, 1231-1243.	2.0	7
107	Monolithic Precolumns as Efficient Tools for Guiding the Design of Nanoparticulate Drug-Delivery Formulations. Analytical Chemistry, 2012, 84, 7415-7421.	6.5	7
108	Microstructure of Calcium Stearate Matrix Pellets: A Function of the Drying Process. Journal of Pharmaceutical Sciences, 2013, 102, 3987-3997.	3.3	7

#	Article	IF	CITATIONS
109	Dissolution Testing of Hardly Soluble Materials by Surface Sensitive Techniques: Clotrimazole from an Insoluble Matrix. Pharmaceutical Research, 2014, 31, 2708-2715.	3.5	6
110	Hot Melt Coating of Amorphous Carvedilol. Pharmaceutics, 2020, 12, 519.	4.5	6
111	Manufacturing of a Secretoneurin Drug Delivery System with Self-Assembled Protamine Nanoparticles by Titration. PLoS ONE, 2016, 11, e0164149.	2.5	5
112	Reduced activity of BRAF protein kinase in hop and hop hpy mouse mutants. Mammalian Genome, 1998, 9, 905-906.	2.2	4
113	Rapid Screening Method for Antisense Oligonucleotides Against Human Growth Factor Receptor p185erbB-2. Oligonucleotides, 2004, 14, 1-9.	2.7	4
114	The patched signaling pathway in tumorigenesis and development: lessons from animal models. , 1999, 77, 459.		4
115	Vancomycin Loaded Glycerol Monooleate Liquid Crystalline Phases Modified with Surfactants. Pharmaceutics, 2020, 12, 521.	4.5	3
116	Impact of Surface Properties of Core Material on the Stability of Hot Melt-Coated Multiparticulate Systems. Pharmaceutics, 2021, 13, 366.	4.5	3
117	Pharmacokinetics of a novel liquid controlled release codeine formulation. Drug Development and Industrial Pharmacy, 2011, 37, 1119-1124.	2.0	2
118	Impact of polysorbate 65 on tripalmitin crystal growth and release stability of hot melt coated multiparticulate systems. International Journal of Pharmaceutics, 2021, 607, 120970.	5.2	2
119	Cationic nanostructured lipid carriers (cNLCs) as drug delivery systems for miRNA. , 2020, , .		1
120	Solid Lipid Nanoparticles as Drug Delivery Systems for MicroRNA. , 2021, , .		0
121	Virus-Based Nanoparticles: Drug Delivery Systems. , 0, , 8224-8235.		0
122	Stearylamine-based nanoemulsion: preparation, characterization and physical stability investigation. , 2020, , .		0
123	Membrane interactions and cellular uptake of an amphipathic cell-penetrating peptide as a delivery system for miRNA. Makedonsko Farmacevtski Bilten, 2020, 66, 123-124.	0.0	0
124	Formulation and characterization of cationic nanoemulsions as carriers for microRNA. , 2022, , .		0
125	Going green: Development of a sustainable lipid-based enteric coating formulation for low-dose aspirin multiparticulate systems. International Journal of Pharmaceutics, 2022, 614, 121453.	5.2	0