Giovani Pezzulo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/867811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consensus Paper: The Cerebellum's Role in Movement and Cognition. Cerebellum, 2014, 13, 151-177.	1.4	815
2	Active Inference: A Process Theory. Neural Computation, 2017, 29, 1-49.	1.3	677
3	Active inference and epistemic value. Cognitive Neuroscience, 2015, 6, 187-214.	0.6	476
4	Active Inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 2015, 134, 17-35.	2.8	458
5	Active inference and learning. Neuroscience and Biobehavioral Reviews, 2016, 68, 862-879.	2.9	366
6	Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex. Cerebellum, 2017, 16, 203-229.	1.4	321
7	Navigating the Affordance Landscape: Feedback Control as a Process Model of Behavior and Cognition. Trends in Cognitive Sciences, 2016, 20, 414-424.	4.0	287
8	Active Inference, Curiosity and Insight. Neural Computation, 2017, 29, 2633-2683.	1.3	223
9	Internally generated sequences in learning and executing goal-directed behavior. Trends in Cognitive Sciences, 2014, 18, 647-657.	4.0	208
10	Hierarchical Active Inference: A Theory of Motivated Control. Trends in Cognitive Sciences, 2018, 22, 294-306.	4.0	191
11	Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form. Annual Review of Biomedical Engineering, 2017, 19, 353-387.	5.7	182
12	Knowing one's place: a free-energy approach to pattern regulation. Journal of the Royal Society Interface, 2015, 12, 20141383.	1.5	153
13	Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychological Research, 2009, 73, 559-577.	1.0	138
14	Embodied Choice: How Action Influences Perceptual Decision Making. PLoS Computational Biology, 2015, 11, e1004110.	1,5	137
15	Top-down models in biology: explanation and control of complex living systems above the molecular level. Journal of the Royal Society Interface, 2016, 13, 20160555.	1.5	131
16	Human Sensorimotor Communication: A Theory of Signaling in Online Social Interactions. PLoS ONE, 2013, 8, e79876.	1.1	126
17	Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 2019, 29, 120-153.	1.5	126
18	The Mixed Instrumental Controller: Using Value of Information to Combine Habitual Choice and Mental Simulation. Frontiers in Psychology, 2013, 4, 92.	1.1	125

#	Article	IF	CITATIONS
19	When affordances climb into your mind: Advantages of motor simulation in a memory task performed by novice and expert rock climbers. Brain and Cognition, 2010, 73, 68-73.	0.8	120
20	Re-membering the body: applications of computational neuroscience to the top-down control of regeneration of limbs and other complex organs. Integrative Biology (United Kingdom), 2015, 7, 1487-1517.	0.6	117
21	What should I do next? Using shared representations to solve interaction problems. Experimental Brain Research, 2011, 211, 613-630.	0.7	115
22	The Mechanics of Embodiment: A Dialog on Embodiment and Computational Modeling. Frontiers in Psychology, 2011, 2, 5.	1.1	114
23	Computational Grounded Cognition: a new alliance between grounded cognition and computational modeling. Frontiers in Psychology, 2012, 3, 612.	1.1	108
24	The symbol detachment problem. Cognitive Processing, 2007, 8, 115-131.	0.7	107
25	The why, what, where, when and how of goal-directed choice: neuronal and computational principles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130483.	1.8	105
26	Grounding Procedural and Declarative Knowledge in Sensorimotor Anticipation. Mind and Language, 2011, 26, 78-114.	1.2	100
27	Coordinating with the Future: The Anticipatory Nature of Representation. Minds and Machines, 2008, 18, 179-225.	2.7	99
28	The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities. Neuroscience and Biobehavioral Reviews, 2013, 37, 2504-2515.	2.9	98
29	The secret life of predictive brains: what's spontaneous activity for?. Trends in Cognitive Sciences, 2021, 25, 730-743.	4.0	94
30	The role of domain information in Word Sense Disambiguation. Natural Language Engineering, 2002, 8, 359-373.	2.1	91
31	The body talks: Sensorimotor communication and its brain and kinematic signatures. Physics of Life Reviews, 2019, 28, 1-21.	1.5	85
32	Why do you fear the bogeyman? An embodied predictive coding model of perceptual inference. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 902-911.	1.0	82
33	Action simulation in the human brain: Twelve questions. New Ideas in Psychology, 2013, 31, 270-290.	1.2	80
34	An information-theoretic perspective on the costs of cognition. Neuropsychologia, 2019, 123, 5-18.	0.7	76
35	Shared Representations as Coordination Tools for Interaction. Review of Philosophy and Psychology, 2011, 2, 303-333.	1.0	72
36	From allostatic agents to counterfactual cognisers: active inference, biological regulation, and the origins of cognition. Biology and Philosophy, 2020, 35, 1.	0.7	70

#	Article	IF	CITATIONS
37	Action perception as hypothesis testing. Cortex, 2017, 89, 45-60.	1.1	64
38	Unfolding Visual Lexical Decision in Time. PLoS ONE, 2012, 7, e35932.	1.1	61
39	Interactional leader–follower sensorimotor communication strategies during repetitive joint actions. Journal of the Royal Society Interface, 2015, 12, 20150644.	1.5	61
40	Internally generated hippocampal sequences as a vantage point to probe futureâ€oriented cognition. Annals of the New York Academy of Sciences, 2017, 1396, 144-165.	1.8	61
41	Studying mirror mechanisms within generative andÂpredictive architectures for joint action. Cortex, 2013, 49, 2968-2969.	1.1	54
42	The Value of Foresight: How Prospection Affects Decision-Making. Frontiers in Neuroscience, 2011, 5, 79.	1.4	53
43	The "Interaction Engine†A Common Pragmatic Competence Across Linguistic and Nonlinguistic Interactions. IEEE Transactions on Autonomous Mental Development, 2012, 4, 105-123.	2.3	53
44	Feel the Time. Time Perception as a Function of Interoceptive Processing. Frontiers in Human Neuroscience, 2018, 12, 74.	1.0	53
45	An interoceptive illusion of effort induced by false heart-rate feedback. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13897-13902.	3.3	51
46	An Active Inference view of cognitive control. Frontiers in Psychology, 2012, 3, 478.	1.1	50
47	Active inference and robot control: a case study. Journal of the Royal Society Interface, 2016, 13, 20160616.	1.5	49
48	Prefrontal Goal Codes Emerge as Latent States in Probabilistic Value Learning. Journal of Cognitive Neuroscience, 2016, 28, 140-157.	1.1	47
49	<i>Divide et impera</i> : subgoaling reduces the complexity of probabilistic inference and problem solving. Journal of the Royal Society Interface, 2015, 12, 20141335.	1.5	45
50	Active Inference, epistemic value, and vicarious trial and error. Learning and Memory, 2016, 23, 322-338.	0.5	44
51	A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning. Neural Networks, 2013, 41, 212-224.	3.3	43
52	Tracking Second Thoughts: Continuous and Discrete Revision Processes during Visual Lexical Decision. PLoS ONE, 2015, 10, e0116193.	1.1	43
53	Problem Solving as Probabilistic Inference with Subgoaling: Explaining Human Successes and Pitfalls in the Tower of Hanoi. PLoS Computational Biology, 2016, 12, e1004864.	1.5	37
54	Fatigue increases the perception of future effort during decision making. Psychology of Sport and Exercise, 2017, 33, 150-160.	1.1	36

#	Article	IF	CITATIONS
55	Behavioral Implicit Communication (BIC). International Journal of Ambient Computing and Intelligence, 2010, 2, 1-12.	0.8	35
56	Simulating homeostatic, allostatic and goal-directed forms of interoceptive control using active inference. Biological Psychology, 2022, 169, 108266.	1.1	34
57	The sensorimotor and social sides of the architecture of speech. Behavioral and Brain Sciences, 2014, 37, 569-570.	0.4	33
58	The eye in hand: predicting others' behavior by integrating multiple sources of information. Journal of Neurophysiology, 2015, 113, 2271-2279.	0.9	33
59	Avoiding Accidents at the Champagne Reception. Psychological Science, 2017, 28, 338-345.	1.8	33
60	Shared action spaces: a basis function framework for social re-calibration of sensorimotor representations supporting joint action. Frontiers in Human Neuroscience, 2013, 7, 800.	1.0	32
61	Commentary: Respiration-Entrained Brain Rhythms Are Global but Often Overlooked. Frontiers in Systems Neuroscience, 2018, 12, 25.	1.2	32
62	Model-Based Approaches to Active Perception and Control. Entropy, 2017, 19, 266.	1.1	31
63	Increased heart rate after exercise facilitates the processing of fearful but not disgusted faces. Scientific Reports, 2018, 8, 398.	1.6	31
64	Decision and action planning signals in human posterior parietal cortex during delayed perceptual choices. European Journal of Neuroscience, 2014, 39, 1370-1383.	1.2	30
65	Fatigue modulates dopamine availability and promotes flexible choice reversals during decision making. Scientific Reports, 2017, 7, 535.	1.6	30
66	Hippocampal place cells encode global location but not connectivity in a complex space. Current Biology, 2021, 31, 1221-1233.e9.	1.8	30
67	Planning at decision time and in the background during spatial navigation. Current Opinion in Behavioral Sciences, 2019, 29, 69-76.	2.0	29
68	A Fuzzy Approach to a Belief-Based Trust Computation. Lecture Notes in Computer Science, 2003, , 73-86.	1.0	28
69	Anticipation and anticipatory behavior. Cognitive Processing, 2007, 8, 67-70.	0.7	28
70	Using hippocampal-striatal loops for spatial navigation and goal-directed decision-making. Cognitive Processing, 2012, 13, 125-129.	0.7	27
71	Caching mechanisms for habit formation in Active Inference. Neurocomputing, 2019, 359, 298-314.	3.5	27
72	The road towards understanding embodied decisions. Neuroscience and Biobehavioral Reviews, 2021, 131, 722-736.	2.9	27

#	Article	IF	CITATIONS
73	Analysis of hand kinematics reveals inter-individual differences in intertemporal decision dynamics. Experimental Brain Research, 2015, 233, 3597-3611.	0.7	26
74	Model-based spatial navigation in the hippocampus-ventral striatum circuit: A computational analysis. PLoS Computational Biology, 2018, 14, e1006316.	1.5	26
75	Keep your interoceptive streams under control: An active inference perspective on anorexia nervosa. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 427-440.	1.0	25
76	The principles of goal-directed decision-making: from neural mechanisms to computation and robotics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130470.	1.8	24
77	Bistability of somatic pattern memories: stochastic outcomes in bioelectric circuits underlying regeneration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190765.	1.8	24
78	From Actions to Goals and Vice-Versa: Theoretical Analysis and Models of the Ideomotor Principle and TOTE. Lecture Notes in Computer Science, 2006, , 73-93.	1.0	24
79	Goals reconfigure cognition by modulating predictive processes in the brain. Behavioral and Brain Sciences, 2014, 37, 154-155.	0.4	23
80	The evolution of brain architectures for predictive coding and active inference. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200531.	1.8	23
81	Mental imagery in the navigation domain: a computational model of sensory-motor simulation mechanisms. Adaptive Behavior, 2013, 21, 251-262.	1.1	22
82	Interindividual Variability in Functional Connectivity as Long-Term Correlate of Temporal Discounting. PLoS ONE, 2015, 10, e0119710.	1.1	22
83	Symptom Perception From a Predictive Processing Perspective. Clinical Psychology in Europe, 2019, 1, .	0.5	22
84	The Cat is on the Mat. or is it a Dog? Dynamic Competition in Perceptual Decision Making. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44, 539-551.	5.9	21
85	Tracking and simulating dynamics of implicit stereotypes: A situated social cognition perspective Journal of Personality and Social Psychology, 2016, 111, 817-834.	2.6	21
86	Nonparametric Problem-Space Clustering: Learning Efficient Codes for Cognitive Control Tasks. Entropy, 2016, 18, 61.	1.1	21
87	Computational explorations of perceptual symbol systems theory. New Ideas in Psychology, 2011, 29, 275-297.	1.2	20
88	Differential effects of visual uncertainty and contextual guidance on perceptual decisions: Evidence from eye and mouse tracking in visual search. Journal of Vision, 2016, 16, 28.	0.1	20
89	Evidence for sparse synergies in grasping actions. Scientific Reports, 2018, 8, 616.	1.6	20
90	Proactive Action Preparation: Seeing Action Preparation as a Continuous and Proactive Process. Motor Control, 2012, 16, 386-424.	0.3	19

#	Article	IF	CITATIONS
91	Predictive Processing in Cognitive Robotics: A Review. Neural Computation, 2021, 33, 1402-1432.	1.3	19
92	Aversive Pavlovian Responses Affect Human Instrumental Motor Performance. Frontiers in Neuroscience, 2012, 6, 134.	1.4	18
93	The effect of model uncertainty on cooperation in sensorimotor interactions. Journal of the Royal Society Interface, 2013, 10, 20130554.	1.5	18
94	Active inference and cognitive-emotional interactions in the brain. Behavioral and Brain Sciences, 2015, 38, e85.	0.4	18
95	Combined effects of expectations and visual uncertainty upon detection and identification of a target in the fog. Cognitive Processing, 2015, 16, 343-348.	0.7	18
96	Realigning Models of Habitual and Goal-Directed Decision-Making. , 2018, , 407-428.		18
97	Prospective and Pavlovian mechanisms in aversive behaviour. Cognition, 2016, 146, 415-425.	1.1	17
98	Intentional action: from anticipation to goal-directed behavior. Psychological Research, 2009, 73, 437-440.	1.0	16
99	Topological Selfâ€Organization and Prediction Learning Support Both Action and Lexical Chains in the Brain. Topics in Cognitive Science, 2014, 6, 476-491.	1.1	16
100	More gain less pain: balance control learning shifts the activation patterns of leg and neck muscles and increases muscular parsimony. Experimental Brain Research, 2015, 233, 2103-2114.	0.7	16
101	A Programmer–Interpreter Neural Network Architecture for Prefrontal Cognitive Control. International Journal of Neural Systems, 2015, 25, 1550017.	3.2	16
102	Integrating Trustfulness and Decision Using Fuzzy Cognitive Maps. Lecture Notes in Computer Science, 2003, , 195-210.	1.0	16
103	How do you hold your mouse? Tracking the compatibility effect between hand posture and stimulus size. Psychological Research, 2015, 79, 928-938.	1.0	15
104	The Anticipatory Approach: Definitions and Taxonomies. Lecture Notes in Computer Science, 2008, , 23-43.	1.0	15
105	Evolution of a predictive internal model in an embodied and situated agent. Theory in Biosciences, 2011, 130, 259-276.	0.6	14
106	Learning programs is better than learning dynamics: A programmable neural network hierarchical architecture in a multi-task scenario. Adaptive Behavior, 2016, 24, 27-51.	1.1	14
107	Tracking the Time Course of Bayesian Inference With Event-Related Potentials:A Study Using the Central Cue Posner Paradigm. Frontiers in Psychology, 2019, 10, 1424.	1.1	14
108	Perception and misperception of bodily symptoms from an active inference perspective: Modelling the case of panic disorder Psychological Review, 2021, 128, 690-710.	2.7	14

#	Article	IF	CITATIONS
109	Active inference through whiskers. Neural Networks, 2021, 144, 428-437.	3.3	14
110	Designing modular architectures in the framework AKIRA. Multiagent and Grid Systems, 2007, 3, 65-86.	0.5	13
111	Changes of Mind after Movement Onset Depend on the State of the Motor System. ENeuro, 2021, 8, ENEURO.0174-21.2021.	0.9	13
112	Reading as active sensing: a computational model of gaze planning during word recognition. Frontiers in Neurorobotics, 2010, 4, 6.	1.6	12
113	Visual Word Recognition in Deaf Readers: Lexicality Is Modulated by Communication Mode. PLoS ONE, 2013, 8, e59080.	1.1	12
114	Working memory and mental imagery in Cerebral Palsy: A single case investigation. Neurocase, 2012, 18, 298-304.	0.2	11
115	Intentional strategies that make co-actors more predictable: The case of signaling. Behavioral and Brain Sciences, 2013, 36, 371-372.	0.4	11
116	Sensorimotor Communication for Humans and Robots: Improving Interactive Skills by Sending Coordination Signals. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10, 903-917.	2.6	11
117	Local high-frequency vibration therapy following eccentric exercises reduces muscle soreness perception and posture alterations in elite athletes. European Journal of Applied Physiology, 2019, 119, 539-549.	1.2	11
118	Modelling ourselves: what the free energy principle reveals about our implicit notions of representation. SynthÃ^se, 2021, 199, 7801-7833.	0.6	11
119	The effects of phonological similarity on the semantic categorisation of pictorial and lexical stimuli: evidence from continuous behavioural measures. Journal of Cognitive Psychology, 2016, 28, 159-170.	0.4	10
120	You cannot speak and listen at the same time: a probabilistic model of turn-taking. Biological Cybernetics, 2017, 111, 165-183.	0.6	10
121	A Goal-Directed Bayesian Framework for Categorization. Frontiers in Psychology, 2017, 8, 408.	1.1	10
122	Understanding, Explanation, and Active Inference. Frontiers in Systems Neuroscience, 2021, 15, 772641.	1.2	10
123	How can bottom-up information shape learning of top-down attention-control skills?. , 2010, , .		9
124	Multiple timescales of body schema reorganization due to plastic surgery. Human Movement Science, 2015, 42, 54-70.	0.6	9
125	The intentional stance as structure learning: a computational perspective on mindreading. Biological Cybernetics, 2015, 109, 453-467.	0.6	9
126	Sensorimotor Coarticulation in the Execution and Recognition of Intentional Actions. Frontiers in Psychology, 2017, 8, 237.	1.1	9

#	Article	IF	CITATIONS
127	Anticipations, Brains, Individual and Social Behavior: An Introduction to Anticipatory Systems. Lecture Notes in Computer Science, 2006, , 1-18.	1.0	9
128	The value of uncertainty: An active inference perspective. Behavioral and Brain Sciences, 2019, 42, e47.	0.4	9
129	Active inference unifies intentional and conflict-resolution imperatives of motor control. PLoS Computational Biology, 2022, 18, e1010095.	1.5	9
130	DiPRA: a layered agent architecture which integrates practical reasoning and sensorimotor schemas. Connection Science, 2009, 21, 297-326.	1.8	8
131	Dynamic lexical decisions in French: Evidence for a feedback inconsistency effect. Acta Psychologica, 2017, 180, 23-32.	0.7	8
132	Words as social tools: Flexibility, situatedness, language and sociality in abstract concepts. Physics of Life Reviews, 2019, 29, 178-184.	1.5	8
133	Benefits of Anticipations in Cognitive Agents. Lecture Notes in Computer Science, 2008, , 45-62.	1.0	8
134	Making the Environment an Informative Place: A Conceptual Analysis of Epistemic Policies and Sensorimotor Coordination. Entropy, 2019, 21, 350.	1.1	7
135	Moral decisions in the age of COVID-19: Your choices really matter. Social Sciences & Humanities Open, 2021, 4, 100149.	1.3	7
136	Cooperating through a belief-based trust computation. , 0, , .		6
137	How active perception and attractor dynamics shape perceptual categorization: A computational model. Neural Networks, 2014, 60, 1-16.	3.3	6
138	Embodying Markov blankets. Physics of Life Reviews, 2018, 24, 32-36.	1.5	6
139	Differential neural dynamics underlying pragmatic and semantic affordance processing in macaque ventral premotor cortex. Scientific Reports, 2019, 9, 11700.	1.6	6
140	Bounded Seed-AGI. Lecture Notes in Computer Science, 2014, , 85-96.	1.0	6
141	Schema-Based Design and the AKIRA Schema Language: An Overview. Lecture Notes in Computer Science, 2006, , 128-152.	1.0	6
142	Learning Epistemic Actions in Model-Free Memory-Free Reinforcement Learning: Experiments with a Neuro-robotic Model. Lecture Notes in Computer Science, 2013, , 191-203.	1.0	6
143	The Mechanisms and Benefits of a Future-Oriented Brain. , 2016, , 267-284.		6
144	Commentary: The Problem of Mental Action: Predictive Control Without Sensory Sheets. Frontiers in Psychology, 2018, 9, 1291.	1.1	5

#	Article	IF	CITATIONS
145	Haptic communication optimises joint decisions and affords implicit confidence sharing. Scientific Reports, 2021, 11, 1051.	1.6	5
146	A framework to identify structured behavioral patterns within rodent spatial trajectories. Scientific Reports, 2021, 11, 468.	1.6	5
147	Behavioral Implicit Communication (BIC). , 0, , 1-12.		5
148	Shared population-level dynamics in monkey premotor cortex during solo action, joint action and action observation. Progress in Neurobiology, 2022, 210, 102214.	2.8	5
149	The role of synergies within generative models of action execution and recognition: A computational perspective. Physics of Life Reviews, 2015, 12, 114-117.	1.5	4
150	Predictive Technologies: Can Smart Tools Augment the Brain's Predictive Abilities?. Frontiers in Neuroscience, 2016, 10, 186.	1.4	4
151	Disorders of morphogenesis as disorders of inference. Physics of Life Reviews, 2020, 33, 112-114.	1.5	4
152	The Half-Empty/Full Glass in Mental Health: A Reference-Dependent Computational Model of Evaluation in Psychopathology. Clinical Psychological Science, 2021, 9, 1021-1034.	2.4	4
153	Dynamic Computation and Context Effects in the Hybrid Architecture AKIRA. Lecture Notes in Computer Science, 2005, , 368-381.	1.0	4
154	A Study of Off-Line Uses of Anticipation. Lecture Notes in Computer Science, 2008, , 372-382.	1.0	4
155	Introduction: Anticipation in Natural and Artificial Cognition. Lecture Notes in Computer Science, 2008, , 3-22.	1.0	4
156	From Sensorimotor to Higher-Level Cognitive Processes: An Introduction to Anticipatory Behavior Systems. Lecture Notes in Computer Science, 2009, , 1-9.	1.0	4
157	Learning to Look in Different Environments: An Active-Vision Model Which Learns and Readapts Visual Routines. Lecture Notes in Computer Science, 2010, , 199-210.	1.0	4
158	Emergence of an Internal Model in Evolving Robots Subjected to Sensory Deprivation. Lecture Notes in Computer Science, 2010, , 575-586.	1.0	4
159	Anticipation and Future-Oriented Capabilities in Natural and Artificial Cognition. , 2007, , 257-270.		4
160	A reference-based theory of motivation and effort allocation. Psychonomic Bulletin and Review, 2022, 29, 2070-2082.	1.4	4
161	Active Bayesian perception and reinforcement learning. , 2013, , .		3
162	Bodily Information and Top-Down Affective Priming Jointly Affect the Processing of Fearful Faces. Frontiers in Psychology, 2021, 12, 625986.	1.1	3

#	Article	IF	CITATIONS
163	Designing and Implementing MABS in AKIRA. Lecture Notes in Computer Science, 2005, , 49-64.	1.0	3
164	Modulatory Influence of Motivations on a Schema-Based Architecture: A Simulative Study. Lecture Notes in Computer Science, 2007, , 374-385.	1.0	3
165	Anticipatory, Goal-Directed Behavior. Lecture Notes in Computer Science, 2008, , 85-113.	1.0	3
166	Contract Nets for Evaluating Agent Trustworthiness. Lecture Notes in Computer Science, 2005, , 43-58.	1.0	3
167	Fuzzy-based Schema Mechanisms in AKIRA. , 0, , .		2
168	Toward mechanistic models of action-oriented and detached cognition. Behavioral and Brain Sciences, 2016, 39, e130.	0.4	2
169	The influence of communication mode on written language processing and beyond. Behavioral and Brain Sciences, 2017, 40, e47.	0.4	2
170	The epistemic value of conformity. Physics of Life Reviews, 2021, 36, 74-76.	1.5	2
171	Simulation and Anticipation as Tools for Coordinating with the Future. Advances in Intelligent Systems and Computing, 2013, , 117-125.	0.5	2
172	Anticipation and anticipatory behavior: II. Cognitive Processing, 2007, 8, 149-150.	0.7	1
173	Research on cognitive robotics at the Institute of Cognitive Sciences and Technologies, National Research Council of Italy. Cognitive Processing, 2011, 12, 367-374.	0.7	1
174	The Contribution of Pragmatic Skills to Cognition and Its Development. , 2016, , 19-34.		1
175	Learning to Grasp Information with Your Own Hands. Lecture Notes in Computer Science, 2011, , 398-399.	1.0	1
176	Social epistemic actions. Behavioral and Brain Sciences, 2020, 43, e113.	0.4	1
177	The anticipatory construction of reality as a central concern for psychology and robotics. New Ideas in Psychology, 2013, 31, 217-220.	1.2	0
178	The future of sensorimotor communication research. Physics of Life Reviews, 2019, 28, 46-51.	1.5	0
179	Is visual lexical decision a dynamic and competitive process? No, if we look at reaction times. Yes, if we study how it unfolds in time. Frontiers in Neuroscience, 0, 6, .	1.4	0

180 Schema-Based Architectures of Machine Learning. , 2012, , 2942-2945.

#	Article	IF	CITATIONS
181	The status of the simulative method in cognitive science: current debates and future prospects. Paradigmi, 2016, , 47-66.	0.0	0
182	Hippocampal Place Cells Encode Global Location But Not Changes in Environmental Connectivity in a 4-Room Navigation Task. SSRN Electronic Journal, 0, , .	0.4	0
183	Endowing Artificial Systems with Anticipatory Capabilities: Success Cases. Lecture Notes in Computer Science, 0, , 237-254.	1.0	0