Wei Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8678096/publications.pdf

Version: 2024-02-01

41258 39575 9,004 100 49 94 citations h-index g-index papers 102 102 102 7834 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sandwich layered double hydroxides with graphene oxide for enhanced water desalination. Science China Materials, 2022, 65, 803-810.	3. 5	17
2	Bidirectional Light-Driven Ion Transport through Porphyrin Metal–Organic Framework-Based van der Waals Heterostructures via pH-Induced Band Alignment Inversion. CCS Chemistry, 2022, 4, 3329-3341.	4.6	13
3	Corrosion Chemistry of Electrocatalysts. Advanced Materials, 2022, 34, e2200840.	11.1	43
4	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	102
5	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie, 2022, 134, .	1.6	22
6	A Substrateâ€Induced Fabrication of Active Freeâ€Standing Nanocarbon Film as Air Cathode in Rechargeable Zinc–Air Batteries. Small, 2022, 18, 2106606.	5.2	15
7	Micelle Dynamic Reconstruction to Effectively Modulate the Transmission of Smart Windows. Journal of Physical Chemistry B, 2022, 126, 4872-4880.	1.2	1
8	A Dendriteâ€Free Lithium/Carbon Nanotube Hybrid for Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2006702.	11.1	77
9	Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable <scp>zincâ€air</scp> batteries. EcoMat, 2021, 3, e12067.	6.8	48
10	Harnessing Ionic Power from Equilibrium Electrolyte Solution via Photoinduced Active Ion Transport through vanâ€derâ€Waalsâ€Like Heterostructures. Advanced Materials, 2021, 33, e2007529.	11.1	37
11	Recent Advances on Electrospun Nanomaterials for Zinc–Air Batteries. Small Science, 2021, 1, 2100010.	5.8	88
12	Efficient Electroconversion of Carbon Dioxide to Formate by a Reconstructed Aminoâ€Functionalized Indium–Organic Framework Electrocatalyst. Angewandte Chemie - International Edition, 2021, 60, 19107-19112.	7.2	89
13	Efficient Electroconversion of Carbon Dioxide to Formate by a Reconstructed Aminoâ€Functionalized Indium–Organic Framework Electrocatalyst. Angewandte Chemie, 2021, 133, 19255-19260.	1.6	8
14	Electrospinning Synthesis of Self‧tanding Cobalt/Nanocarbon Hybrid Membrane for Longâ€Life Rechargeable Zinc–Air Batteries. Advanced Functional Materials, 2021, 31, 2105021.	7.8	66
15	Construction of cyclodextrin functionalized nitrogen-doped graphene quantum dot electrochemical sensing interface for recognition of tryptophan isomers. Materials Chemistry and Physics, 2021, 273, 125086.	2.0	13
16	Photoinduced Directional Proton Transport through Printed Asymmetric Graphene Oxide Superstructures: A New Driving Mechanism under Fullâ€Area Light Illumination. Advanced Functional Materials, 2020, 30, 1907549.	7.8	23
17	Lightâ€Powered Directional Nanofluidic Ion Transport in Kirigamiâ€Made Asymmetric Photonicâ€lonic Devices. Small, 2020, 16, e1905557.	5.2	23
18	Laterally Heterogeneous 2D Layered Materials as an Artificial Lightâ€Harvesting Proton Pump. Advanced Functional Materials, 2020, 30, 2001549.	7.8	17

#	Article	IF	CITATIONS
19	Electricâ€Fieldâ€Induced Ionic Sieving at Planar Graphene Oxide Heterojunctions for Miniaturized Water Desalination. Advanced Materials, 2020, 32, e1903954.	11.1	64
20	A sensitive and specific nanosensor for monitoring extracellular potassium levels in the brain. Nature Nanotechnology, 2020, 15, 321-330.	15.6	83
21	Lightâ€Driven Active Proton Transport through Photoacid―and Photobaseâ€Doped Janus Graphene Oxide Membranes. Advanced Materials, 2019, 31, e1903029.	11.1	70
22	Highly Efficient Ionic Photocurrent Generation through WS ₂ â€Based 2D Nanofluidic Channels. Small, 2019, 15, e1905355.	5.2	41
23	Rectified Ion Transport Through 2D Nanofluidic Heterojunctions. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900129.	1.2	9
24	Electrokinetically Controlled Asymmetric Ion Transport through 1D/2D Nanofluidic Heterojunctions. Advanced Materials Technologies, 2019, 4, 1800742.	3.0	31
25	Blue Energy: Understanding the Giant Gap between Singleâ€Pore―and Membraneâ€Based Nanofluidic Osmotic Power Generators (Small 11/2019). Small, 2019, 15, 1970059.	5.2	0
26	On the Role of Heterogeneous Nanopore Junction in Osmotic Power Generation. Chinese Journal of Chemistry, 2019, 37, 469-473.	2.6	26
27	Asymmetric Electrokinetic Proton Transport through 2D Nanofluidic Heterojunctions. ACS Nano, 2019, 13, 4238-4245.	7.3	79
28	Photo-induced ultrafast active ion transport through graphene oxide membranes. Nature Communications, 2019, 10, 1171.	5.8	146
29	Nano-Subsidence-Assisted Precise Integration of Patterned Two-Dimensional Materials for High-Performance Photodetector Arrays. ACS Nano, 2019, 13, 2654-2662.	7. 3	14
30	Mass spectrometric quantification of the binding ratio of metalâ€based anticancer complexes with protein thiols. Rapid Communications in Mass Spectrometry, 2019, 33, 951-958.	0.7	3
31	Understanding the Giant Gap between Singleâ€Pore―and Membraneâ€Based Nanofluidic Osmotic Power Generators. Small, 2019, 15, e1804279.	5.2	106
32	A general strategy to simulate osmotic energy conversion in multi-pore nanofluidic systems. Materials Chemistry Frontiers, 2018, 2, 935-941.	3.2	45
33	Highly rectified ion transport through 2D WSe2/MoS2 bi-layered membranes. Chinese Chemical Letters, 2018, 29, 892-894.	4.8	29
34	Controlling Fundamental Fluctuations for Reproducible Growth of Large Single-Crystal Graphene. ACS Nano, 2018, 12, 1778-1784.	7.3	31
35	Anomalous Poreâ€Density Dependence in Nanofluidic Osmotic Power Generation . Chinese Journal of Chemistry, 2018, 36, 417-420.	2.6	51
36	Simulation of osmotic energy conversion in nanoporous materials: a concise single-pore model. Inorganic Chemistry Frontiers, 2018, 5, 1677-1682.	3.0	21

#	Article	lF	Citations
37	On the Origin of Ion Selectivity in Ultrathin Nanopores: Insights for Membraneâ€6cale Osmotic Energy Conversion. Advanced Functional Materials, 2018, 28, 1804189.	7.8	101
38	Fabrication of "Plug and Play―Channels with Dual Responses by Host–Guest Interactions. Small, 2017, 13, 1600287.	5.2	25
39	Anomalous Channelâ€Length Dependence in Nanofluidic Osmotic Energy Conversion. Advanced Functional Materials, 2017, 27, 1604302.	7.8	126
40	Electrokinetic Energy Conversion in Selfâ€Assembled 2D Nanofluidic Channels with Janus Nanobuilding Blocks. Advanced Materials, 2017, 29, 1700177.	11.1	170
41	Water-assisted growth of large-sized single crystal hexagonal boron nitride grains. Materials Chemistry Frontiers, 2017, 1, 1836-1840.	3.2	34
42	Photo-switchable two-dimensional nanofluidic ionic diodes. Chemical Science, 2017, 8, 4381-4386.	3.7	50
43	Nanofluidics in two-dimensional layered materials: inspirations from nature. Chemical Society Reviews, 2017, 46, 5400-5424.	18.7	233
44	Bioinspired Energy Conversion in Nanofluidics: A Paradigm of Material Evolution. Advanced Materials, 2017, 29, 1702773.	11.1	103
45	Direct Four-Probe Measurement of Grain-Boundary Resistivity and Mobility in Millimeter-Sized Graphene. Nano Letters, 2017, 17, 5291-5296.	4.5	59
46	On the Origin of Ionic Rectification in DNA-Stuffed Nanopores: The Breaking and Retrieving Symmetry. Journal of the American Chemical Society, 2017, 139, 18739-18746.	6.6	92
47	Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs. Advanced Functional Materials, 2017, 27, 1603623.	7.8	312
48	Oxidativeâ€Etchingâ€Assisted Synthesis of Centimeterâ€Sized Singleâ€Crystalline Graphene. Advanced Materials, 2016, 28, 3152-3158.	11.1	81
49	A comparative study on the interactions of human copper chaperone Cox17 with anticancer organoruthenium(II) complexes and cisplatin by mass spectrometry. Journal of Inorganic Biochemistry, 2016, 161, 99-106.	1.5	4
50	Selective Ionic Transport: Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films (Adv. Funct. Mater. 32/2016). Advanced Functional Materials, 2016, 26, 5947-5947.	7.8	3
51	Identification of binding sites of cisplatin to human copper chaperone protein Cox17 by highâ€resolution FTâ€ICRâ€MS. Rapid Communications in Mass Spectrometry, 2016, 30, 168-172.	0.7	6
52	Highly Selective Ionic Transport through Subnanometer Pores in Polymer Films. Advanced Functional Materials, 2016, 26, 5796-5803.	7.8	182
53	Growth and Etching Kinetics: Growth and Etching of Monolayer Hexagonal Boron Nitride (Adv.) Tj ETQq1 1 0.784	1314 rgBT 11.1	/Oyerlock 10
54	Growth and Etching of Monolayer Hexagonal Boron Nitride. Advanced Materials, 2015, 27, 4858-4864.	11.1	93

#	Article	IF	CITATIONS
55	Governing Rule for Dynamic Formation of Grain Boundaries in Grown Graphene. ACS Nano, 2015, 9, 5792-5798.	7.3	66
56	Targetâ€Specific 3D DNA Gatekeepers for Biomimetic Nanopores. Advanced Materials, 2015, 27, 2090-2095.	11.1	76
57	Nanopore-based sensing and analysis: beyond the resistive-pulse method. Science Bulletin, 2015, 60, 491-502.	4.3	22
58	Learning from Nature: Binary Cooperative Complementary Nanomaterials. Small, 2015, 11, 1072-1096.	5.2	88
59	Mechanical exfoliation of track-etched two-dimensional layered materials for the fabrication of ultrathin nanopores. Chemical Communications, 2014, 50, 14149-14152.	2.2	23
60	Two-dimensional ion channel based soft-matter piezoelectricity. Science China Materials, 2014, 57, 2-6.	3.5	31
61	Water wettability in nanoconfined environment. Science China: Physics, Mechanics and Astronomy, 2014, 57, 836-843.	2.0	10
62	High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation. Journal of the American Chemical Society, 2014, 136, 12265-12272.	6.6	462
63	Computational Fluid Dynamics Analysis of a Fluoride Salt–Cooled Pebble-Bed Test Reactor. Nuclear Science and Engineering, 2014, 178, 86-102.	0.5	12
64	BIOINSPIRED SMART NANOCHANNELS. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 743-783.	0.1	1
65	Bioâ€Inspired Twoâ€Dimensional Nanofluidic Generators Based on a Layered Graphene Hydrogel Membrane. Advanced Materials, 2013, 25, 6064-6068.	11.1	232
66	Transferrin Serves As a Mediator to Deliver Organometallic Ruthenium(II) Anticancer Complexes into Cells. Inorganic Chemistry, 2013, 52, 5328-5338.	1.9	111
67	Twoâ€Way Nanopore Sensing of Sequenceâ€Specific Oligonucleotides and Smallâ€Molecule Targets in Complex Matrices Using Integrated DNA Supersandwich Structures. Angewandte Chemie - International Edition, 2013, 52, 2007-2011.	7.2	158
68	Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Accounts of Chemical Research, 2013, 46, 2834-2846.	7.6	369
69	Highly-Efficient Gating of Solid-State Nanochannels by DNA Supersandwich Structure Containing ATP Aptamers: A Nanofluidic IMPLICATION Logic Device. Journal of the American Chemical Society, 2012, 134, 15395-15401.	6.6	197
70	Concentration-Gradient-Dependent Ion Current Rectification in Charged Conical Nanopores. Langmuir, 2012, 28, 2194-2199.	1.6	127
71	Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene. Energy and Environmental Science, 2012, 5, 5221-5225.	15.6	241
72	Highâ€Temperature Gating of Solidâ€State Nanopores with Thermoâ€Responsive Macromolecular Nanoactuators in Ionic Liquids. Advanced Materials, 2012, 24, 962-967.	11.1	98

#	Article	IF	CITATIONS
73	Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication. Nano Research, 2012, 5, 99-108.	5.8	49
74	Towards understanding the nanofluidic reverse electrodialysis system: well matched charge selectivity and ionic composition. Energy and Environmental Science, 2011, 4, 2259.	15.6	168
75	Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 2011, 40, 2385.	18.7	632
76	Tuning surface wettability through supramolecular interactions. Soft Matter, 2011, 7, 1638.	1.2	30
77	Enantioselective Recognition in Biomimetic Single Artificial Nanochannels. Journal of the American Chemical Society, 2011, 133, 7644-7647.	6.6	239
78	Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes. Journal of Materials Chemistry, 2011, 21, 3204.	6.7	311
79	Measurements on diproton emission from the break-up channels of 23Al and 22Mg. Science China: Physics, Mechanics and Astronomy, 2011, 54, 18-23.	2.0	4
80	Supercapacitor-battery hybrid energy storage devices from an aqueous nitroxide radical active material. Science Bulletin, 2011, 56, 2433-2436.	1.7	5
81	Water Transport and Purification in Nanochannels Controlled by Asymmetric Wettability. Small, 2011, 7, 2225-2231.	5.2	69
82	Current Rectification in Temperatureâ€Responsive Single Nanopores. ChemPhysChem, 2010, 11, 859-864.	1.0	174
83	Energy Harvesting with Singleâ€lonâ€Selective Nanopores: A Concentrationâ€Gradientâ€Driven Nanofluidic Power Source. Advanced Functional Materials, 2010, 20, 1339-1344.	7.8	419
84	Integrating Ionic Gate and Rectifier Within One Solidâ€State Nanopore via Modification with Dualâ€Responsive Copolymer Brushes. Advanced Functional Materials, 2010, 20, 3561-3567.	7.8	108
85	Nanofluidic diode generated by pH gradient inside track-etched conical nanopore. , 2010, , .		0
86	Enhancing the rectification efficiency by changing ion species and introducing concentration gradients. , $2010, , .$		0
87	A biomimetic zinc activated ion channel. Chemical Communications, 2010, 46, 1682.	2.2	138
88	A Biomimetic Potassium Responsive Nanochannel: G-Quadruplex DNA Conformational Switching in a Synthetic Nanopore. Journal of the American Chemical Society, 2009, 131, 7800-7805.	6.6	316
89	Controllable etching of heavy ion tracks with organic solvent addition in etchant. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 3095-3099.	0.6	31
90	Gating of Single Synthetic Nanopores by Proton-Driven DNA Molecular Motors. Journal of the American Chemical Society, 2008, 130, 8345-8350.	6.6	295

#	Article	IF	CITATIONS
91	Asymmetric properties of ion transport in a charged conical nanopore. Physical Review E, 2007, 75, 051201.	0.8	111
92	How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores. Journal Physics D: Applied Physics, 2007, 40, 7077-7084.	1.3	65
93	Imaging Simulation for MMW Synthetic Aperture Radiometer. Journal of Infrared, Millimeter and Terahertz Waves, 2004, 25, 845-853.	0.6	0
94	Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach. Chemistry of Materials, 2004, 16, 4022-4027.	3.2	256
95	Experimental Research on Optimal Millimeter Wave Radiometric Images. Journal of Infrared, Millimeter and Terahertz Waves, 2003, 24, 2173-2180.	0.6	5
96	8MM Radiometric Simulation Detection Based on Optical Image. Journal of Infrared, Millimeter and Terahertz Waves, 2003, 24, 603-611.	0.6	9
97	Research for 3mm Band IF-Switch Radiometer. Journal of Infrared, Millimeter and Terahertz Waves, 2001, 22, 887-893.	0.6	2
98	The Scatter Characteristic to Sky Temperature of Metal Targets. Journal of Infrared, Millimeter and Terahertz Waves, 1999, 20, 1371-1375.	0.6	3
99	Design of 3MM radiometric imaging system. , 0, , .		0
100	Wavelet-based fusion for optical and MMW radiometric images. , 0, , .		0