Stacey L Harmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/867740/publications.pdf

Version: 2024-02-01

53 papers 9,567 citations

38 h-index 53 g-index

82 all docs

82 docs citations

times ranked

82

8409 citing authors

#	Article	IF	CITATIONS
1	A TILLING by sequencing approach to identify induced mutations in sunflower genes. Scientific Reports, 2021, 11, 9885.	3.3	12
2	Flower orientation influences floral temperature, pollinator visits and plant fitness. New Phytologist, 2021, 232, 868-879.	7.3	22
3	XAP5 CIRCADIAN TIMEKEEPER Affects Both DNA Damage Responses and Immune Signaling in Arabidopsis. Frontiers in Plant Science, 2021, 12, 707923.	3.6	4
4	Circadian Rhythms in Plants. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034611.	5.5	119
5	Arabidopsis JMJD5/JMJ30 Acts Independently of LUX ARRHYTHMO Within the Plant Circadian Clock to Enable Temperature Compensation. Frontiers in Plant Science, 2019, 10, 57.	3.6	19
6	Growth-mediated plant movements: hidden in plain sight. Current Opinion in Plant Biology, 2018, 41, 89-94.	7.1	45
7	Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7147-7152.	7.1	89
8	The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size. Plant Physiology, 2017, 173, 2308-2322.	4.8	72
9	Circadian rhythms vary over the growing season and correlate with fitness components. Molecular Ecology, 2017, 26, 5528-5540.	3.9	35
10	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	2.6	237
11	Circadian regulation of hormone signaling and plant physiology. Plant Molecular Biology, 2016, 91, 691-702.	3.9	70
12	Circadian regulation of sunflower heliotropism, floral orientation, and pollinator visits. Science, 2016, 353, 587-590.	12.6	187
13	<i>YUCCA</i> auxin biosynthetic genes are required for Arabidopsis shade avoidance. PeerJ, 2016, 4, e2574.	2.0	68
14	Reassess the <i>t</i> Test: Interact with All Your Data via ANOVA. Plant Cell, 2015, 27, 2088-2094.	6.6	48
15	A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light Â. Plant Physiology, 2015, 169, 814-825.	4.8	26
16	Turning heads: The biology of solar tracking in sunflower. Plant Science, 2014, 224, 20-26.	3.6	74
17	Wheels within wheels: the plant circadian system. Trends in Plant Science, 2014, 19, 240-249.	8.8	317
18	Yeast Xâ€chromosomeâ€associated protein 5 (Xap5) functions with H2A.Z to suppress aberrant transcripts. EMBO Reports, 2014, 15, 894-902.	4.5	13

#	Article	IF	CITATIONS
19	Global Profiling of the Circadian Transcriptome Using Microarrays. Methods in Molecular Biology, 2014, 1158, 45-56.	0.9	15
20	The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin. Cell, 2013, 153, 193-205.	28.9	914
21	Unanticipated regulatory roles for <i>Arabidopsis</i> phytochromes revealed by null mutant analysis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1542-1547.	7.1	107
22	Accurate timekeeping is controlled by a cycling activator in Arabidopsis. ELife, 2013, 2, e00473.	6.0	170
23	Mutation of <i>Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1</i> Causes Circadian Clock Defects. Plant Cell, 2012, 24, 4066-4082.	6.6	112
24	Circadian Phase Has Profound Effects on Differential Expression Analysis. PLoS ONE, 2012, 7, e49853.	2.5	51
25	REVEILLE8 and PSEUDO-REPONSE REGULATOR5 Form a Negative Feedback Loop within the Arabidopsis Circadian Clock. PLoS Genetics, 2011, 7, e1001350.	3.5	215
26	<i>XAP5 CIRCADIAN TIMEKEEPER</i> Regulates Ethylene Responses in Aerial Tissues of Arabidopsis Â. Plant Physiology, 2011, 155, 988-999.	4.8	27
27	Genomic Analysis of Circadian Clock-, Light-, and Growth-Correlated Genes Reveals PHYTOCHROME-INTERACTING FACTOR5 as a Modulator of Auxin Signaling in Arabidopsis Â. Plant Physiology, 2011, 156, 357-372.	4.8	136
28	Network Quantitative Trait Loci Mapping of Circadian Clock Outputs Identifies Metabolic Pathway-to-Clock Linkages in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 471-485.	6.6	139
29	JMJD5 Functions in concert with TOC1 in the arabidopsis circadian system. Plant Signaling and Behavior, 2011, 6, 445-448.	2.4	30
30	Plant Biology in the Fourth Dimension. Plant Physiology, 2010, 154, 467-470.	4.8	18
31	Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21623-21628.	7.1	158
32	REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16883-16888.	7.1	226
33	The Circadian System in Higher Plants. Annual Review of Plant Biology, 2009, 60, 357-377.	18.7	635
34	Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology, 2008, 9, R130.	9.6	677
35	The Development of Protein Microarrays and Their Applications in DNA–Protein and Protein–Protein Interaction Analyses of Arabidopsis Transcription Factors. Molecular Plant, 2008, 1, 27-41.	8.3	78
36	<i>XAP5 CIRCADIAN TIMEKEEPER</i> Coordinates Light Signals for Proper Timing of Photomorphogenesis and the Circadian Clock in <i>Arabidopsis</i> A. Plant Cell, 2008, 20, 1244-1259.	6.6	50

#	Article	IF	Citations
37	The Circadian Clock Regulates Auxin Signaling and Responses in Arabidopsis. PLoS Biology, 2007, 5, e222.	5.6	302
38	Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element. PLoS Genetics, 2007, 3, e172.	3.5	205
39	GIGANTEA Acts in Blue Light Signaling and Has Biochemically Separable Roles in Circadian Clock and Flowering Time Regulation. Plant Physiology, 2007, 143, 473-486.	4.8	156
40	GIGANTEA Regulates Phytochrome A-Mediated Photomorphogenesis Independently of Its Role in the Circadian Clock. Plant Physiology, 2007, 144, 495-502.	4.8	65
41	Rhythmic growth explained by coincidence between internal and external cues. Nature, 2007, 448, 358-361.	27.8	599
42	Overlapping and Distinct Roles of PRR7 and PRR9 in the Arabidopsis Circadian Clock. Current Biology, 2005, 15, 47-54.	3.9	408
43	Positive and Negative Factors Confer Phase-Specific Circadian Regulation of Transcription in Arabidopsis. Plant Cell, 2005, 17, 1926-1940.	6.6	184
44	Critical Role for CCA1 and LHY in Maintaining Circadian Rhythmicity in Arabidopsis. Current Biology, 2002, 12, 757-761.	3.9	275
45	Molecular Bases of Circadian Rhythms. Annual Review of Cell and Developmental Biology, 2001, 17, 215-253.	9.4	344
46	Microarrays: Determining the Balance of Cellular Transcription. Plant Cell, 2000, 12, 613-615.	6.6	28
47	Microarrays: Determining the Balance of Cellular Transcription. Plant Cell, 2000, 12, 613.	6.6	1
48	Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock. Science, 2000, 290, 2110-2113.	12.6	1,539
49	The Src Homology Domain 2-Containing Inositol Phosphatase SHIP Forms a Ternary Complex with Shc and Grb2 in Antigen Receptor-stimulated B Lymphocytes. Journal of Biological Chemistry, 1999, 274, 12183-12191.	3.4	49
50	Shc Contains Two Grb2 Binding Sites Needed for Efficient Formation of Complexes with SOS in B Lymphocytes. Molecular and Cellular Biology, 1997, 17, 4087-4095.	2.3	82
51	An Aspartate/Insulin Receptor Chimera Mitogenically Activates Fibroblasts. Journal of Biological Chemistry, 1996, 271, 27927-27930.	3.4	9
52	Activation-induced Association of a 145-kDa Tyrosine-phosphorylated Protein with Shc and Syk in B Lymphocytes and Macrophages. Journal of Biological Chemistry, 1996, 271, 1145-1152.	3.4	76
53	i‰-Conotoxin GVIA and nifedipine inhibit the depolarizing action of the fungal metabolite, destruxin B on muscle from the tobacco budworm (Heliothis virescens). Toxicon, 1990, 28, 1249-1254.	1.6	23