Zafer Erbay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8677303/publications.pdf

Version: 2024-02-01

53	2,140	26	45
papers	citations	h-index	g-index
53	53	53	1788
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Enzyme-modified cheese powder production: Influence of spray drying conditions on the physical properties, free fatty acid content and volatile compounds. International Dairy Journal, 2022, 125, 105241.	3.0	8
2	Microscopy-Assisted Digital Image Analysis with Trainable Weka Segmentation (TWS) for Emulsion Droplet Size Determination. Coatings, 2022, 12, 364.	2.6	5
3	Extraction optimization and microencapsulation of phenolic antioxidant compounds from lemon balm ($\langle i \rangle$ Melissa officinalis $\langle i \rangle$ ÂL.): Instant soluble tea production. Journal of Food Processing and Preservation, 2021, 45, .	2.0	12
4	Enzyme Modified Cheese. Food Engineering Series, 2021, , 397-416.	0.7	2
5	Variation of volatile composition during the production of microencapsulated cream powder. International Dairy Journal, 2021, 118, 105047.	3.0	3
6	Optimisation of spray drying process in microencapsulated cream powder production. Journal of Dairy Research, 2020, 87, 375-378.	1.4	5
7	Production of enzyme-modified cheese (EMC) with ripened white cheese flavour: Il- effects of lipases. Food and Bioproducts Processing, 2020, 122, 230-244.	3.6	31
8	Effects of spray drying process conditions on the quality properties of microencapsulated cream powder. International Dairy Journal, 2019, 88, 60-70.	3.0	28
9	Production of enzyme-modified cheese (EMC) with ripened white cheese flavour: I-effects of proteolytic enzymes and determination of their appropriate combination. Food and Bioproducts Processing, 2019, 117, 287-301.	3.6	29
10	Optimization of Headspace Solid-phase Microextraction for the Analysis of Volatile Compounds of High-fat Dairy Powders. Food Analytical Methods, 2019, 12, 2216-2225.	2.6	8
11	Effects of using whey and maltodextrin in white cheese powder production on free fatty acid content, nonenzymatic browning and oxidation degree during storage. International Dairy Journal, 2019, 96, 1-9.	3.0	11
12	The compositional properties, proteolytic–lipolytic maturation parameters and volatile compositions of commercial enzymeâ€modified cheeses with different cheese flavours. International Journal of Dairy Technology, 2019, 72, 416-426.	2.8	18
13	Enhanced exergetic analysis of an olive oil refining plant: evaluation of the first and second level of exergy destructions. International Journal of Exergy, 2019, 28, 255.	0.4	O
14	Production of microencapsulated cream: Impact of wall materials and their ratio. International Dairy Journal, 2018, 83, 20-27.	3.0	14
15	The physical, microstructural, chemical and sensorial properties of spray dried full-fat white cheese powders stored in different multilayer packages. Journal of Food Engineering, 2018, 229, 57-64.	5. 2	24
16	Composition, proteolysis, lipolysis, volatile compound profile and sensory characteristics of ripened white cheeses manufactured in different geographical regions of Turkey. International Dairy Journal, 2018, 87, 26-36.	3.0	33
17	Optimization of Headspace Solid-Phase Microextraction with Different Fibers for the Analysis of Volatile Compounds of White-Brined Cheese by Using Response Surface Methodology. Food Analytical Methods, 2017, 10, 1956-1964.	2.6	23
18	Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method. Energy, 2017, 127, 502-515.	8.8	34

#	Article	IF	Citations
19	Exergoeconomic evaluation of a ground-source heat pump food dryer at varying dead state temperatures. Journal of Cleaner Production, 2017, 142, 1425-1435.	9.3	47
20	Investigation of lipolytic and proteolytic ripening degrees of enzyme-modified dairy products manufactured in Turkey. Pamukkale University Journal of Engineering Sciences, 2017, 23, 919-925.	0.4	3
21	Splitting the exergy destructions of an olive oil refining plant into avoidable and unavoidable parts based on actual operational data. International Journal of Exergy, 2016, 21, 277.	0.4	5
22	Energy and exergy analyses of a fluidized bed coal combustor steam plant in textile industry. Fuel, 2016, 183, 441-448.	6.4	33
23	Energy and exergy analyses of spray drying of a fruit puree (cornelian cherry puree). International Journal of Exergy, 2015, 16, 315.	0.4	19
24	Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder. Journal of Dairy Science, 2015, 98, 2934-2943.	3.4	59
25	Effects of whey or maltodextrin addition during production on physical quality of white cheese powder during storage. Journal of Dairy Science, 2015, 98, 8391-8404.	3.4	33
26	Optimization of spray drying process in cheese powder production. Food and Bioproducts Processing, 2015, 93, 156-165.	3.6	67
27	Application of conventional and advanced exergy analyses to evaluate the performance of a ground-source heat pump (GSHP) dryer used in food drying. Energy Conversion and Management, 2014, 78, 499-507.	9.2	84
28	Exergoeconomic performance assessment of a pilot-scale spray dryer using the specific exergy costing method. Biosystems Engineering, 2014, 122, 127-138.	4.3	28
29	Advanced exergoeconomic evaluation of a heat pump food dryer. Biosystems Engineering, 2014, 124, 29-39.	4.3	48
30	Performance assessment and optimization of industrial pasta drying. International Journal of Energy Research, 2013, 37, 913-922.	4.5	30
31	Advanced Exergy Analysis of a Heat Pump Drying System Used in Food Drying. Drying Technology, 2013, 31, 802-810.	3.1	41
32	Splitting the exergy destruction into avoidable and unavoidable parts of a gas engine heat pump (GEHP) for food drying processes based on experimental values. Energy Conversion and Management, 2013, 73, 309-316.	9.2	42
33	Kinetics of Total Phenolic Content and Total Color Difference During Liquid Smoking of Kashar Cheese. International Journal of Food Properties, 2013, 16, 852-866.	3.0	3
34	Exergoeconomic (Thermoeconomic) Analysis and Performance Assessment of a Gas Engine–Driven Heat Pump Drying System Based on Experimental Data. Drying Technology, 2012, 30, 52-62.	3.1	26
35	Investigating the effects of operating conditions on the exergetic performance of a pilot-scale spray-drying system. International Journal of Exergy, 2012, 11, 302.	0.4	18
36	Energetic, Exergetic, and Exergoeconomic Analyses of Spray-Drying Process during White Cheese Powder Production. Drying Technology, 2012, 30, 435-444.	3.1	56

#	Article	IF	CITATIONS
37	ENERGY AND EXERGY ANALYSES ON DRYING OF OLIVE LEAVES (<i>OLEA EUROPAEA</i> L) IN TRAY DRIER. Journal of Food Process Engineering, 2011, 34, 2105-2123.	2.9	39
38	Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes. Applied Energy, 2011, 88, 882-891.	10.1	56
39	Exergoeconomic analyses of a gas engine driven heat pump drier and food drying process. Applied Energy, 2011, 88, 2677-2684.	10.1	53
40	Performance investigation of the drying of parsley in a tray dryer system. International Journal of Exergy, 2010, 7, 193.	0.4	26
41	The Importance and Potential Uses of Olive Leaves. Food Reviews International, 2010, 26, 319-334.	8.4	78
42	Exergetic performance assessment of a pilot-scale heat pump belt conveyor dryer. International Journal of Energy Research, 2010, 34, 249-264.	4.5	22
43	THINâ€LAYER DRYING BEHAVIORS OF OLIVE LEAVES (<i>OLEA EUROPAEA</i> L.). Journal of Food Process Engineering, 2010, 33, 287-308.	2.9	56
44	An exergetic performance assessment of three different food driers. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010, 224, 1-12.	1.4	23
45	A Comparative Study on Exergetic Performance Assessment for Drying of Broccoli Florets in Three Different Drying Systems. Drying Technology, 2010, 28, 193-204.	3.1	69
46	A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 2010, 50, 441-464.	10.3	378
47	Exergoeconomic Analysis of Plum Drying in a Heat Pump Conveyor Dryer. Drying Technology, 2010, 28, 1385-1395.	3.1	43
48	Exergy Analysis of Food Drying Processes. Green Energy and Technology, 2010, , 267-279.	0.6	3
49	Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering, 2009, 91, 533-541.	5.2	188
50	A review of gas engine driven heat pumps (GEHPs) for residential and industrial applications. Renewable and Sustainable Energy Reviews, 2009, 13, 85-99.	16.4	89
51	Optimization of Drying of Olive Leaves in a Pilot-Scale Heat Pump Dryer. Drying Technology, 2009, 27, 416-427.	3.1	86
52	The Importance and Potential Uses of Olive Leaves. , 0, .		1
53	Enzim Modifiye Peynir ve Üretim Teknikleri. Akademik Gıda, 0, , 94-102.	0.8	0