
Josep Àlvar Calduch-Giner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8676796/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revising the Impact and Prospects of Activity and Ventilation Rate Bio-Loggers for Tracking Welfare and Fish-Environment Interactions in Salmonids and Mediterranean Farmed Fish. Frontiers in Marine Science, 2022, 9, .	1.2	7
2	Diet and Host Genetics Drive the Bacterial and Fungal Intestinal Metatranscriptome of Gilthead Sea Bream. Frontiers in Microbiology, 2022, 13, .	1.5	12
3	Effects of genetics and early-life mild hypoxia on size variation in farmed gilthead sea bream (Sparus) Tj ETQq1 1 ().784314 0.9	rgBT /Over <mark>lo</mark>
4	Health status in gilthead seabream (Sparus aurata) juveniles fed diets devoid of fishmeal and supplemented with Phaeodactylum tricornutum. Journal of Applied Phycology, 2021, 33, 979-996.	1.5	10
5	The Effects of Nisin-Producing Lactococcus lactis Strain Used as Probiotic on Gilthead Sea Bream (Sparus aurata) Growth, Gut Microbiota, and Transcriptional Response. Frontiers in Marine Science, 2021, 8, .	1.2	21
6	Dietary Histidine, Threonine, or Taurine Supplementation Affects Gilthead Seabream (Sparus aurata) Immune Status. Animals, 2021, 11, 1193.	1.0	6
7	The Use of Defatted Tenebrio molitor Larvae Meal as a Main Protein Source Is Supported in European Sea Bass (Dicentrarchus labrax) by Data on Growth Performance, Lipid Metabolism, and Flesh Quality. Frontiers in Physiology, 2021, 12, 659567.	1.3	30
8	Targeting the Mild-Hypoxia Driving Force for Metabolic and Muscle Transcriptional Reprogramming of Gilthead Sea Bream (Sparus aurata) Juveniles. Biology, 2021, 10, 416.	1.3	8
9	Use of accelerometer technology for individual tracking of activity patterns, metabolic rates and welfare in farmed gilthead sea bream (Sparus aurata) facing a wide range of stressors. Aquaculture, 2021, 539, 736609.	1.7	11
10	Reshaping of Gut Microbiota in Gilthead Sea Bream Fed Microbial and Processed Animal Proteins as the Main Dietary Protein Source. Frontiers in Marine Science, 2021, 8, .	1.2	18
11	Physiological trade-offs associated with fasting weight loss, resistance to exercise and behavioral traits in farmed gilthead sea bream (Sparus aurata) selected by growth. Aquaculture Reports, 2021, 20, 100645.	0.7	9
12	Diet and Exercise Modulate GH-IGFs Axis, Proteolytic Markers and Myogenic Regulatory Factors in Juveniles of Gilthead Sea Bream (Sparus aurata). Animals, 2021, 11, 2182.	1.0	7
13	A Novel Miniaturized Biosensor for Monitoring Atlantic Salmon Swimming Activity and Respiratory Frequency. Animals, 2021, 11, 2403.	1.0	8
14	Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream (Sparus) Tj ETQq0 0 0 in Physiology, 2021, 12, 748265.	rgBT /Ove 1.3	rlock 10 Tf 5 26
15	Modulation of Gilthead Sea Bream Gut Microbiota by a Bioactive Egg White Hydrolysate: Interactions Between Bacteria and Host Lipid Metabolism. Frontiers in Marine Science, 2021, 8, .	1.2	9
16	From operculum and body tail movements to different coupling of physical activity and respiratory frequency in farmed gilthead sea bream and European sea bass. Insights on aquaculture biosensing. Computers and Electronics in Agriculture, 2020, 175, 105531.	3.7	14
17	Local DNA methylation helps to regulate muscle sirtuin 1 gene expression across seasons and advancing age in gilthead sea bream (Sparus aurata). Frontiers in Zoology, 2020, 17, 15.	0.9	9
18	Tissue-Specific Orchestration of Gilthead Sea Bream Resilience to Hypoxia and High Stocking Density. Frontiers in Physiology, 2019, 10, 840.	1.3	47

#	Article	IF	CITATIONS
19	Dietary tryptophan supplementation induces a transient immune enhancement of gilthead seabream (Sparus aurata) juveniles fed fishmeal-free diets. Fish and Shellfish Immunology, 2019, 93, 240-250.	1.6	11
20	Disruption of gut integrity and permeability contributes to enteritis in a fish-parasite model: a story told from serum metabolomics. Parasites and Vectors, 2019, 12, 486.	1.0	24
21	Protective effects of seaweed supplemented diet on antioxidant and immune responses in European seabass (Dicentrarchus labrax) subjected to bacterial infection. Scientific Reports, 2019, 9, 16134.	1.6	34
22	Effects of diisononyl phthalate (DiNP) on the endocannabinoid and reproductive systems of male gilthead sea bream (Sparus aurata) during the spawning season. Archives of Toxicology, 2019, 93, 727-741.	1.9	20
23	Effects of Dietary Bisphenol A on the Reproductive Function of Gilthead Sea Bream (Sparus aurata) Testes. International Journal of Molecular Sciences, 2019, 20, 5003.	1.8	15
24	Ultra-Low Power Sensor Devices for Monitoring Physical Activity and Respiratory Frequency in Farmed Fish. Frontiers in Physiology, 2019, 10, 667.	1.3	32
25	Selection for growth is associated in gilthead sea bream (Sparus aurata) with diet flexibility, changes in growth patterns and higher intestine plasticity. Aquaculture, 2019, 507, 349-360.	1.7	27
26	A long-term growth hormone treatment stimulates growth and lipolysis in gilthead sea bream juveniles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 232, 67-78.	0.8	18
27	Genome Sequencing and Transcriptome Analysis Reveal Recent Species-Specific Gene Duplications in the Plastic Gilthead Sea Bream (Sparus aurata). Frontiers in Marine Science, 2019, 6, .	1.2	26
28	Sex, Age, and Bacteria: How the Intestinal Microbiota Is Modulated in a Protandrous Hermaphrodite Fish. Frontiers in Microbiology, 2019, 10, 2512.	1.5	52
29	Contributions of MS metabolomics to gilthead sea bream (Sparus aurata) nutrition. Serum fingerprinting of fish fed low fish meal and fish oil diets. Aquaculture, 2019, 498, 503-512.	1.7	50
30	Impact of low fish meal and fish oil diets on the performance, sex steroid profile and male-female sex reversal of gilthead sea bream (Sparus aurata) over a three-year production cycle. Aquaculture, 2018, 490, 64-74.	1.7	67
31	Recombinant bovine growth hormone (rBGH) enhances somatic growth by regulating the GH-IGF axis in fingerlings of gilthead sea bream (Sparus aurata). General and Comparative Endocrinology, 2018, 257, 192-202.	0.8	36
32	Somatotropic Axis Regulation Unravels the Differential Effects of Nutritional and Environmental Factors in Growth Performance of Marine Farmed Fishes. Frontiers in Endocrinology, 2018, 9, 687.	1.5	56
33	Gene expression analysis of Atlantic salmon gills reveals mucin 5 and interleukin 4/13 as key molecules during amoebic gill disease. Scientific Reports, 2018, 8, 13689.	1.6	53
34	Comprehensive overview of feedâ€toâ€fillet transfer of new and traditional contaminants in Atlantic salmon and gilthead sea bream fed plantâ€based diets. Aquaculture Nutrition, 2018, 24, 1782-1795.	1.1	18
35	Co-expression Analysis of Sirtuins and Related Metabolic Biomarkers in Juveniles of Gilthead Sea Bream (Sparus aurata) With Differences in Growth Performance. Frontiers in Physiology, 2018, 9, 608.	1.3	47
36	Chrelin and Its Receptors in Gilthead Sea Bream: Nutritional Regulation. Frontiers in Endocrinology, 2018, 9, 399.	1.5	17

#	Article	IF	CITATIONS
37	Hints on T cell responses in a fish-parasite model: Enteromyxum leei induces differential expression of T cell signature molecules depending on the organ and the infection status. Parasites and Vectors, 2018, 11, 443.	1.0	47
38	Dietary sodium heptanoate helps to improve feed efficiency, growth hormone status and swimming performance in gilthead sea bream (<i>Sparus aurata</i>). Aquaculture Nutrition, 2018, 24, 1638-1651.	1.1	27
39	Endocrine disruptors in the diet of male Sparus aurata: Modulation of the endocannabinoid system at the hepatic and central level by Di-isononyl phthalate and Bisphenol A. Environment International, 2018, 119, 54-65.	4.8	38
40	Olive oil bioactive compounds increase body weight, and improve gut health and integrity in gilthead sea bream (<i>Sparus aurata</i>). British Journal of Nutrition, 2017, 117, 351-363.	1.2	47
41	Dietary supplementation of heat-treated <i>Gracilaria</i> and <i>Ulva</i> seaweeds enhanced acute hypoxia tolerance in gilthead seabream (<i>Sparus aurata</i>). Biology Open, 2017, 6, 897-908.	0.6	79
42	The circadian transcriptome of marine fish (Sparus aurata) larvae reveals highly synchronized biological processes at the whole organism level. Scientific Reports, 2017, 7, 12943.	1.6	54
43	Tissue-specific gene expression and fasting regulation of sirtuin family in gilthead sea bream (Sparus) Tj ETQq1 1 2017, 187, 153-163.	0.784314 0.7	rgBT /Overlo 39
44	Skin Mucus of Gilthead Sea Bream (Sparus aurata L.). Protein Mapping and Regulation in Chronically Stressed Fish. Frontiers in Physiology, 2017, 8, 34.	1.3	67
45	Gene expression profiling of whole blood cells supports a more efficient mitochondrial respiration in hypoxia-challenged gilthead sea bream (Sparus aurata). Frontiers in Zoology, 2017, 14, 34.	0.9	72
46	Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome, 2017, 5, 164.	4.9	186
47	Untargeted metabolomics approach for unraveling robust biomarkers of nutritional status in fasted gilthead sea bream (Sparus aurata). PeerJ, 2017, 5, e2920.	0.9	26
48	Sodium salt medium-chain fatty acids and <i>Bacillus</i> -based probiotic strategies to improve growth and intestinal health of gilthead sea bream (<i>Sparus aurata</i>). PeerJ, 2017, 5, e4001.	0.9	54
49	Differential Modulation of IgT and IgM upon Parasitic, Bacterial, Viral, and Dietary Challenges in a Perciform Fish. Frontiers in Immunology, 2016, 7, 637.	2.2	102
50	Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil. PLoS ONE, 2016, 11, e0166564.	1.1	146
51	Gene Expression Profiling Reveals Functional Specialization along the Intestinal Tract of a Carnivorous Teleostean Fish (Dicentrarchus labrax). Frontiers in Physiology, 2016, 7, 359.	1.3	42
52	Effects of sustained exercise on GH-IGFs axis in gilthead sea bream (<i>Sparus aurata</i>). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R313-R322.	0.9	32
53	Lasting effects of butyrate and low FM/FO diets on growth performance, blood haematology/biochemistry and molecular growth-related markers in gilthead sea bream (Sparus) Tj ETQq1 1 0.73	84 3.17 4 rgBT	⊺/@verlock 1
54	Unraveling the Tissue-Specific Gene Signatures of Gilthead Sea Bream (Sparus aurata L.) after Hyper- and Hypo-Osmotic Challenges. PLoS ONE, 2016, 11, e0148113.	1.1	27

#	Article	IF	CITATIONS
55	Unraveling the Molecular Signatures of Oxidative Phosphorylation to Cope with the Nutritionally Changing Metabolic Capabilities of Liver and Muscle Tissues in Farmed Fish. PLoS ONE, 2015, 10, e0122889.	1.1	66
56	Effects of dietary NEXT ENHANCE®150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). Fish and Shellfish Immunology, 2015, 44, 117-128.	1.6	67
57	Tissue-specific gene expression and functional regulation of uncoupling protein 2 (UCP2) by hypoxia and nutrient availability in gilthead sea bream (Sparus aurata): implications on the physiological significance of UCP1–3 variants. Fish Physiology and Biochemistry, 2014, 40, 751-762.	0.9	33
58	Interleukin gene expression is strongly modulated at the local level in a fish–parasite model. Fish and Shellfish Immunology, 2014, 37, 201-208.	1.6	72
59	Acute stress response in gilthead sea bream (<i>Sparus aurata</i> L.) is time-of-day dependent: Physiological and oxidative stress indicators. Chronobiology International, 2014, 31, 1051-1061.	0.9	34
60	Transcriptional Assessment by Microarray Analysis and Large-Scale Meta-analysis of the Metabolic Capacity of Cardiac and Skeletal Muscle Tissues to Cope With Reduced Nutrient Availability in Gilthead Sea Bream (Sparus aurata L.). Marine Biotechnology, 2014, 16, 423-435.	1.1	48
61	Deep sequencing for de novo construction of a marine fish (Sparus aurata)transcriptome database with a large coverage of protein-coding transcripts. BMC Genomics, 2013, 14, 178.	1.2	90
62	Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (Sparus aurata) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2013, 8, 123-130.	0.4	56
63	Proteomic evaluation of potentiated sulfa treatment on gilthead sea bream (Sparus aurata L.) liver. Aquaculture, 2013, 376-379, 36-44.	1.7	17
64	Effect of ration size on fillet fatty acid composition, phospholipid allostasis and mRNA expression patterns of lipid regulatory genes in gilthead sea bream (<i>Sparus aurata</i>). British Journal of Nutrition, 2013, 109, 1175-1187.	1.2	49
65	Mucins as Diagnostic and Prognostic Biomarkers in a Fish-Parasite Model: Transcriptional and Functional Analysis. PLoS ONE, 2013, 8, e65457.	1.1	97
66	Modulation of the IgM gene expression and IgM immunoreactive cell distribution by the nutritional background in gilthead sea bream (Sparus aurata) challenged with Enteromyxum leei (Myxozoa). Fish and Shellfish Immunology, 2012, 33, 401-410.	1.6	56
67	Dietary vegetable oils do not alter the intestine transcriptome of gilthead sea bream (Sparus aurata), but modulate the transcriptomic response to infection with Enteromyxum leei. BMC Genomics, 2012, 13, 470.	1.2	73
68	Molecular characterization and expression analysis of six peroxiredoxin paralogous genes in gilthead sea bream (Sparus aurata): Insights from fish exposed to dietary, pathogen and confinement stressors. Fish and Shellfish Immunology, 2011, 31, 294-302.	1.6	60
69	Molecular profiling of the gilthead sea bream (Sparus aurata L.) response to chronic exposure to the myxosporean parasite Enteromyxum leei. Molecular Immunology, 2011, 48, 2102-2112.	1.0	57
70	Feed restriction up-regulates uncoupling protein 3 (UCP3) gene expression in heart and red muscle tissues of gilthead sea bream (Sparus aurata L.). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2011, 159, 296-302.	0.8	24
71	Use of microarray technology to assess the time course of liver stress response after confinement exposure in gilthead sea bream (Sparus aurata L.). BMC Genomics, 2010, 11, 193.	1.2	92
72	Gene expression survey of mitochondrial uncoupling proteins (UCP1/UCP3) in gilthead sea bream (Sparus aurata L.). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2010, 180, 685-694.	0.7	26

#	Article	IF	CITATIONS
73	Effect of ivermectin on the liver of gilthead sea bream Sparus aurata: A proteomic approach. Chemosphere, 2010, 80, 570-577.	4.2	26
74	Dynamics of liver GH/IGF axis and selected stress markers in juvenile gilthead sea bream (Sparus) Tj ETQqO 0 0 & Integrative Physiology, 2009, 154, 197-203.	rgBT /Overl 0.8	ock 10 Tf 50 7 85
75	Targets for TNFα-induced lipolysis in gilthead sea bream(<i>Sparus aurata</i> L.) adipocytes isolated from lean and fat juvenile fish. Journal of Experimental Biology, 2009, 212, 2254-2260.	0.8	40
76	Time series analyses of sea bream (Sparus aurata L.) stress response after confinement exposure. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 151, S41.	0.8	1
77	Chronic exposure to the parasite Enteromyxum leei (Myxozoa: Myxosporea) modulates the immune response and the expression of growth, redox and immune relevant genes in gilthead sea bream, Sparus aurata L Fish and Shellfish Immunology, 2008, 24, 610-619.	1.6	74
78	Confinement exposure induces glucose regulated protein 75 (GRP75/mortalin/mtHsp70/PBP74/HSPA9B) in the hepatic tissue of gilthead sea bream (Sparus aurata L.). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2008, 149, 428-438.	0.7	24
79	Co-expression of IGFs and CH receptors (GHRs) in gilthead sea bream (Sparus aurata L.): sequence analysis of the CHR-flanking region. Journal of Endocrinology, 2007, 194, 361-372.	1.2	43
80	Conjugated Linoleic Acid Affects Lipid Composition, Metabolism, and Gene Expression in Gilthead Sea Bream (Sparus aurata L)3. Journal of Nutrition, 2007, 137, 1363-1369.	1.3	43
81	Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead sea bream (Sparus aurata L.): Networking of systemic and local components of GH/IGF axis. Aquaculture, 2007, 267, 199-212.	1.7	147
82	Differential metabolic and gene expression profile of juvenile common dentex (Dentex dentex L.) and gilthead sea bream (Sparus aurata L.) in relation to redox homeostasis. Aquaculture, 2007, 267, 213-224.	1.7	32
83	Tumour necrosis factor (TNF)α as a regulator of fat tissue mass in the Mediterranean gilthead sea bream (Sparus aurata L.). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2007, 146, 338-345.	0.7	34
84	Duplication of growth hormone receptor (GHR) in fish genome: gene organization and transcriptional regulation of GHR type I and II in gilthead sea bream (Sparus aurata). General and Comparative Endocrinology, 2005, 142, 193-203.	0.8	126
85	Regulation of the somatotropic axis by dietary factors in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition, 2005, 94, 353-361.	1.2	50
86	Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2005, 142, 224-232.	0.7	83
87	Genomic Structure and Functional Analysis of Promoter Region of Somatolactin Gene of Sea Bream (Sparus aurata). Marine Biotechnology, 2004, 6, 411-418.	1.1	8
88	Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture, 2004, 232, 493-510.	1.7	369
89	Expression and Characterization of European Sea Bass (Dicentrarchus labrax) Somatolactin: Assessment of In Vivo Metabolic Effects. Marine Biotechnology, 2003, 5, 92-101.	1.1	46
90	Isolation of Sparus auratus prolactin gene and activity of the cis-acting regulatory elements. General and Comparative Endocrinology, 2003, 134, 57-61.	0.8	16

#	Article	IF	CITATIONS
91	Effects of dietary amino acid profile on growth performance, key metabolic enzymes and somatotropic axis responsiveness of gilthead sea bream (Sparus aurata). Aquaculture, 2003, 220, 749-767.	1.7	142
92	Molecular cloning and characterization of gilthead sea bream (Sparus aurata) growth hormone receptor (GHR). Assessment of alternative splicing. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 136, 1-13.	0.7	76
93	Overview of Fish Growth Hormone Family. New Insights in Genomic Organization and Heterogeneity of Growth Hormone Receptors. Fish Physiology and Biochemistry, 2002, 27, 243-258.	0.9	70
94	cDNA cloning and sequence of European sea bass (Dicentrarchus labrax) somatolactin. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 127, 183-192.	0.7	24
95	Protein sparing effect of dietary lipids in common dentex (): A comparative study with sea bream () and sea bass (). Aquatic Living Resources, 1999, 12, 23-30.	0.5	83
96	Expression of growth hormone gene in the head kidney of gilthead sea bream (Sparus aurata). The Journal of Experimental Zoology, 1999, 283, 326-330.	1.4	23
97	Growth performance and adiposity in gilthead sea bream (Sparus aurata): risks and benefits of high energy diets. Aquaculture, 1999, 171, 279-292.	1.7	170
98	Modulation of the respiratory burst activity of Mediterranean sea bass (Dicentrarchus labraxL.) phagocytes by growth hormone and parasitic status. Fish and Shellfish Immunology, 1998, 8, 25-36.	1.6	36
99	Recombinant somatolactin as a stable and bioactive protein in a cell culture bioassay: development and validation of a sensitive and reproducible radioimmunoassay. Journal of Endocrinology, 1998, 156, 441-447.	1.2	34

100 Growth hormone as an in vitro phagocyte-activating factor in the gilthead sea bream (Sparus aurata) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 1.5

101	The use of recombinant gilthead sea bream (Sparus aurata) growth hormone for radioiodination and standard preparation in radioimmunoassay. Comparative Biochemistry and Physiology A, Comparative Physiology, 1995, 110, 335-340.	0.7	48

102 Fish Growth Hormone Receptor: Molecular Characterization of Two Membrane-Anchored Forms. , 0, .

33