
Simon Creer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8676691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental <scp>DNA</scp> metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 2017, 26, 5872-5895.	3.9	1,210
2	Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology and Evolution, 2014, 29, 358-367.	8.7	920
3	Sequencing our way towards understanding global eukaryotic biodiversity. Trends in Ecology and Evolution, 2012, 27, 233-243.	8.7	395
4	Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nature Communications, 2010, 1, 98.	12.8	321
5	The ecologist's field guide to sequenceâ€based identification of biodiversity. Methods in Ecology and Evolution, 2016, 7, 1008-1018.	5.2	316
6	Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Molecular Ecology, 2010, 19, 4-20.	3.9	309
7	The biogeography of the atlantic salmon (<i>Salmo salar</i>) gut microbiome. ISME Journal, 2016, 10, 1280-1284.	9.8	301
8	DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology, 2019, 28, 1857-1862.	3.9	300
9	How quantitative is metabarcoding: A metaâ€analytical approach. Molecular Ecology, 2019, 28, 420-430.	3.9	274
10	Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nature Communications, 2017, 8, 14087.	12.8	229
11	Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Communications Biology, 2018, 1, 4.	4.4	219
12	DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe. Research Ideas and Outcomes, 0, 2, e11321.	1.0	154
13	Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Molecular Ecology, 2021, 30, 2937-2958.	3.9	149
14	Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos. Frontiers in Marine Science, 2016, 3, .	2.5	138
15	Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. ISME Journal, 2015, 9, 1208-1221.	9.8	120
16	Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Scientific Reports, 2019, 9, 11559.	3.3	109
17	Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability. Scientific Reports, 2017, 7, 42838.	3.3	105
18	Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Molecular Ecology Resources, 2018, 18, 1020-1034.	4.8	104

SIMON CREER

#	Article	IF	CITATIONS
19	Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nature Communications, 2019, 10, 1107.	12.8	104
20	Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Global Ecology and Biogeography, 2014, 23, 1293-1302.	5.8	96
21	Experimental harvesting of fish populations drives genetically based shifts in body size and maturation. Frontiers in Ecology and the Environment, 2013, 11, 181-187.	4.0	93
22	Coexisting cryptic species of the <i>Litoditis marina</i> complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Molecular Ecology, 2016, 25, 2093-2110.	3.9	89
23	Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 2020, 144, 107766.	8.8	88
24	Temperate airborne grass pollen defined by spatio-temporal shifts in community composition. Nature Ecology and Evolution, 2019, 3, 750-754.	7.8	75
25	Sample richness and genetic diversity as drivers of chimera formation in nSSU metagenetic analyses. Nucleic Acids Research, 2012, 40, e66-e66.	14.5	74
26	Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme. Soil Biology and Biochemistry, 2017, 115, 537-546.	8.8	68
27	Key Questions for Next-Generation Biomonitoring. Frontiers in Environmental Science, 2020, 7, .	3.3	68
28	Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Scientific Reports, 2019, 9, 12500.	3.3	67
29	Sample size effects on the assessment of eukaryotic diversity and community structure in aquatic sediments using high-throughput sequencing. Scientific Reports, 2018, 8, 11737.	3.3	55
30	Revealing higher than expected meiofaunal diversity in Antarctic sediments: a metabarcoding approach. Scientific Reports, 2017, 7, 6094.	3.3	51
31	Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks. Science of the Total Environment, 2020, 729, 138801.	8.0	51
32	Phylogenomics and species delimitation for effective conservation of manta and devil rays. Molecular Ecology, 2020, 29, 4783-4796.	3.9	45
33	Plant and soil communities are associated with the response of soil water repellency to environmental stress. Science of the Total Environment, 2019, 687, 929-938.	8.0	41
34	Strategies for sample labelling and library preparation in DNA metabarcoding studies. Molecular Ecology Resources, 2022, 22, 1231-1246.	4.8	40
35	Animals, protists and bacteria share marine biogeographic patterns. Nature Ecology and Evolution, 2021, 5, 738-746.	7.8	36
36	Plasticity in growth of farmed and wild Atlantic salmon: is the increased growth rate of farmed salmon caused by evolutionary adaptations to the commercial diet?. BMC Evolutionary Biology, 2016, 16, 264.	3.2	34

SIMON CREER

#	Article	IF	CITATIONS
37	Whole genome duplication and transposable element proliferation drive genome expansion in Corydoradinae catfishes. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172732.	2.6	32
38	Salinity drives meiofaunal community structure dynamics across the Baltic ecosystem. Molecular Ecology, 2019, 28, 3813-3829.	3.9	31
39	Shifts in honeybee foraging reveal historical changes in floral resources. Communications Biology, 2021, 4, 37.	4.4	31
40	Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Communications Biology, 2021, 4, 512.	4.4	30
41	Tideless estuaries in brackish seas as possible freshwaterâ€marine transition zones for bacteria: the case study of the Vistula river estuary. Environmental Microbiology Reports, 2017, 9, 129-143.	2.4	28
42	Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe. Science Advances, 2021, 7, .	10.3	28
43	Primer and Database Choice Affect Fungal Functional but Not Biological Diversity Findings in a National Soil Survey. Frontiers in Environmental Science, 2019, 7, .	3.3	26
44	Soil health cluster analysis based on national monitoring of soil indicators. European Journal of Soil Science, 2021, 72, 2414-2429.	3.9	26
45	Connecting highâ€throughput biodiversity inventories: Opportunities for a siteâ€based genomic framework for global integration and synthesis. Molecular Ecology, 2021, 30, 1120-1135.	3.9	26
46	Informing marine spatial planning decisions with environmental DNA. Advances in Ecological Research, 2020, 62, 375-407.	2.7	24
47	Environmental DNA reveals links between abundance and composition of airborne grass pollen and respiratory health. Current Biology, 2021, 31, 1995-2003.e4.	3.9	21
48	Subtle shifts in microbial communities occur alongside the release of carbon induced by drought and rewetting in contrasting peatland ecosystems. Scientific Reports, 2017, 7, 11314.	3.3	20
49	Deep segregation in the open ocean: MacaronesiaÂas an evolutionary hotspot for low dispersal marine invertebrates. Molecular Ecology, 2019, 28, 1784-1800.	3.9	20
50	Introduction: Special issue on species interactions, ecological networks and community dynamics – Untangling the entangled bank using molecular techniques. Molecular Ecology, 2019, 28, 157-164.	3.9	20
51	Molecular characterization of a marine turtle tumor epizootic, profiling external, internal and postsurgical regrowth tumors. Communications Biology, 2021, 4, 152.	4.4	20
52	Cosmopolitanism of microbial eukaryotes in the global deep seas. Molecular Ecology, 2012, 21, 1033-1035.	3.9	17
53	Environmental DNA monitoring of oncogenic viral shedding and genomic profiling of sea turtle fibropapillomatosis reveals unusual viral dynamics. Communications Biology, 2021, 4, 565.	4.4	17
54	Evolutionary drivers of kype size in Atlantic salmon (<i>Salmo salar</i>): domestication, age and genetics. Royal Society Open Science, 2019, 6, 190021.	2.4	16

SIMON CREER

#	Article	IF	CITATIONS
55	High throughput shotgun sequencing of eRNA reveals taxonomic and derived functional shifts across a benthic productivity gradient. Molecular Ecology, 2021, 30, 3023-3039.	3.9	16
56	DNA Metabarcoding Methods for the Study of Marine Benthic Meiofauna: A Review. Frontiers in Marine Science, 2021, 8, .	2.5	16
57	Investigating the molecular systematic relationships amongst selected <i><scp>P</scp>lesionika</i> (<scp>D</scp> ecapoda: <scp>P</scp> andalidae) from the <scp>N</scp> ortheast <scp>A</scp> tlantic and <scp>M</scp> editerranean <scp>S</scp> ea. Marine Ecology, 2013, 34, 157-170.	1.1	14
58	Using DNA Metabarcoding to Identify Floral Visitation by Pollinators. Diversity, 2022, 14, 236.	1.7	14
59	Long-Term Drought and Warming Alter Soil Bacterial and Fungal Communities in an Upland Heathland. Ecosystems, 2022, 25, 1279-1294.	3.4	13
60	Does density influence relative growth performance of farm, wild and F ₁ hybrid Atlantic salmon in semi-natural and hatchery common garden conditions?. Royal Society Open Science, 2016, 3, 160152.	2.4	10
61	Seasonal progression and differences in major floral resource use by bees and hoverflies in a diverse horticultural and agricultural landscape revealed by DNA metabarcoding. Journal of Applied Ecology, 2022, 59, 1484-1495.	4.0	10
62	Epistatic regulation of growth in Atlantic salmon revealed: a QTL study performed on the domesticated-wild interface. BMC Genetics, 2020, 21, 13.	2.7	9
63	Novel insights into marine fish biodiversity across a pronounced environmental gradient using replicated environmental DNA analyses. Environmental DNA, 2022, 4, 181-190.	5.8	9
64	Plasticity in response to feed availability: Does feeding regime influence the relative growth performance of domesticated, wild and hybrid Atlantic salmon <i>Salmo salar</i> parr?. Journal of Fish Biology, 2016, 89, 1754-1768.	1.6	8
65	Managing human-mediated range shifts: understanding spatial, temporal and genetic variation in marine non-native species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210025.	4.0	8
66	Temporal Patterns of Honeybee Foraging in a Diverse Floral Landscape Revealed Using Pollen DNA Metabarcoding of Honey. Integrative and Comparative Biology, 2022, 62, 199-210.	2.0	8
67	Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation. Frontiers in Microbiology, 2021, 12, 735022.	3.5	7
68	Above-below surface interactions mediate effects of seagrass disturbance on meiobenthic diversity, nematode and polychaete trophic structure. Communications Biology, 2019, 2, 362.	4.4	6
69	Disentangling the effects of sex, life history and genetic background in Atlantic salmon: growth, heart and liver under common garden conditions. Royal Society Open Science, 2020, 7, 200811.	2.4	4
70	Domesticationâ€induced reduction in eye size revealed in multiple common garden experiments: The case of Atlantic salmon (<i>Salmo salar</i> L.). Evolutionary Applications, 2021, 14, 2319-2332.	3.1	4
71	Decoupled richness of generalist anaerobes and sulphateâ€reducing bacteria is driven by <scp>pH</scp> across land uses in temperate soils. European Journal of Soil Science, 2021, 72, 2445-2456.	3.9	4
72	Marine ecology: Genetics from a drop in the ocean. Nature Ecology and Evolution, 2017, 1, 37.	7.8	3

#	Article	IF	CITATIONS
73	Ancient geological dynamics impact neutral biodiversity accumulation and are detectable in phylogenetic reconstructions. Global Ecology and Biogeography, 2021, 30, 1633-1642.	5.8	1
74	Challenges to Implementing Environmental-DNA Monitoring in Namibia. Frontiers in Environmental Science, 2022, 9, .	3.3	1