
Jong-Eun Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8676630/publications.pdf Version: 2024-02-01

IONG-FUN HONG

#	Article	IF	CITATIONS
1	A dynamic infiltration technique to synthesize nanolayered cathodes for high performance and robust solid oxide fuel cells. Journal of Energy Chemistry, 2022, 70, 201-210.	12.9	18
2	Parametric study on electrodeposition of a nanofibrous LaCoO3 SOFC cathode. Ceramics International, 2021, 47, 5570-5579.	4.8	11
3	Effect of transition metal doping on the sintering and electrochemical properties of GDC buffer layer in SOFCs. International Journal of Applied Ceramic Technology, 2021, 18, 511-524.	2.1	14
4	Microstructure tailoring of solid oxide electrolysis cell air electrode to boost performance and long-term durability. Chemical Engineering Journal, 2021, 410, 128318.	12.7	29
5	Development of High-Performance Anode-Supported Planar SOFC with Large Area by 4-Layer Co-Firing Process. ECS Transactions, 2021, 103, 73-81.	0.5	7
6	Enhancing Bifunctional Electrocatalytic Activities of Oxygen Electrodes via Incorporating Highly Conductive Sm ³⁺ and Nd ³⁺ Double-Doped Ceria for Reversible Solid Oxide Cells. ACS Applied Materials & Interfaces, 2021, 13, 2496-2506.	8.0	38
7	Ceria-Co-Cu-based SOFC anode for direct utilisation of methane or ethanol as fuels. International Journal of Hydrogen Energy, 2020, 45, 5297-5308.	7.1	42
8	Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle. Applied Energy, 2020, 257, 114036.	10.1	11
9	Effect of applied current density on the degradation behavior of anode-supported flat-tubular solid oxide fuel cells. Journal of the European Ceramic Society, 2020, 40, 1407-1417.	5.7	50
10	Influence of novel anode design on the performance and coke resistance towards methane directly-fed solid oxide fuel cells. Ceramics International, 2020, 46, 5368-5379.	4.8	7
11	Hybrid Electrochemical Deposition Route for the Facile Nanofabrication of a Cr-Poisoning-Tolerant La(Ni,Fe)O _{3â^Î} Cathode for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 5730-5738.	8.0	22
12	Electrically Conductive Oxidation-Resistant Boron-Coated Carbon Nanotubes Derived from Atmospheric CO ₂ for Use at High Temperature. ACS Applied Nano Materials, 2020, 3, 8592-8597.	5.0	10
13	The effect of aluminium addition on the high-temperature oxidation behaviour and Cr evaporation of aluminised and alumina-forming alloys for SOFC cathode air pre-heaters. Corrosion Science, 2020, 169, 108612.	6.6	9
14	Corrosion behaviour of nitrided ferritic stainless steels for use in solid oxide fuel cell devices. Corrosion Science, 2020, 165, 108414.	6.6	22
15	Facile surface modification of LSCF/GDC cathodes by epitaxial deposition of Sm _{0.5} Sr _{0.5} CoO ₃ <i>via</i> ultrasonic spray infiltration. Journal of Materials Chemistry A, 2020, 8, 3967-3977.	10.3	41
16	Ex-situ experimental benchmarking of solid oxide fuel cell metal interconnects. Journal of Power Sources, 2019, 437, 226900.	7.8	22
17	Enhancing the Sinterability of Gadolinium-Doped Ceria by Wet Chemical Processing. ECS Transactions, 2019, 91, 1201-1207.	0.5	1
18	Nickel-Free SOFC Anode for Ethanol Electrocatalysis. ECS Transactions. 2019, 91, 1673-1682.	0.5	3

Jong-Eun Hong

#	Article	IF	CITATIONS
19	High Performing and Durable Anode-Supported Solid Oxide Fuel Cell by Using Tape Casting, Lamination and Co-Firing Method. ECS Transactions, 2019, 91, 373-379.	0.5	11
20	Development of Oxide Dispersed Ferritic Steel as a Solid Oxide Fuel Cell Interconnect. ECS Transactions, 2019, 91, 2307-2312.	0.5	9
21	Nano-fabrication of a high-performance LaNiO3 cathode for solid oxide fuel cells using an electrochemical route. Journal of Power Sources, 2019, 429, 97-104.	7.8	36
22	Thermally self-sustaining operation of tubular solid oxide fuel cells integrated with a hybrid partial oxidation reformer using propane. Energy Conversion and Management, 2019, 189, 132-142.	9.2	15
23	Performance characteristics of a robust and compact propane-fueled 150ÂW-class SOFC power-generation system. International Journal of Hydrogen Energy, 2019, 44, 6160-6171.	7.1	15
24	Fabrication of Nanofibrous La1-XSrxCoO3/GDC Composite Cathode Using a Combination of Chemically Assisted Electrodeposition and Infiltration Techniques for Solid Oxide Fuel Cells. ECS Meeting Abstracts, 2019, , .	0.0	0
25	CeO2Co3O4CuO anode for direct utilisation of methane or ethanol in solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, 43, 6340-6351.	7.1	34
26	Production of syngas from H2O/CO2 by high-pressure coelectrolysis in tubular solid oxide cells. Applied Energy, 2018, 212, 759-770.	10.1	30
27	High-performance nanofibrous LaCoO ₃ perovskite cathode for solid oxide fuel cells fabricated <i>via</i> chemically assisted electrodeposition. Journal of Materials Chemistry A, 2018, 6, 6987-6996.	10.3	43
28	Protective coating based on manganese–copper oxide for solid oxide fuel cell interconnects: Plasma spray coating and performance evaluation. Ceramics International, 2018, 44, 11576-11581.	4.8	44
29	Syngas production in high performing tubular solid oxide cells by using high-temperature H2O/CO2 co-electrolysis. Chemical Engineering Journal, 2018, 335, 41-51.	12.7	28
30	An electrochemical and structural study of highly uniform tin oxide nanowires fabricated by a novel, scalable solvoplasma technique as anode material for sodium ion batteries. Journal of Power Sources, 2017, 347, 201-209.	7.8	15
31	Nano-Oxide Dispersed Ferritic Stainless Steel for Metallic Interconnects of Solid Oxide Fuel Cells. ECS Transactions, 2017, 78, 1575-1582.	0.5	11
32	Effect of Alloy Composition on the Oxidation Behaviour and Cr Vaporisation of High-Cr Steels for SOFC Cathode Air Preheater. ECS Transactions, 2017, 78, 1641-1651.	0.5	1
33	Double Layered CeO2-Co3O4-CuO Based Anode for Direct Utilisation of Methane or Ethanol in SOFC. ECS Transactions, 2017, 78, 1343-1351.	0.5	1
34	Effects of La2O3 content and particle size on the long-term stability and thermal cycling property of La2O3-dispersed SUS430 alloys for SOFC interconnect materials. Metals and Materials International, 2017, 23, 1250-1256.	3.4	4
35	The effect of chemical composition on high temperature behaviour of Fe and Cu doped Mn-Co spinels. Ceramics International, 2017, 43, 2829-2835.	4.8	31
36	Cu-Mn-Co oxides as protective materials in SOFC technology: The effect of chemical composition on mechanochemical synthesis, sintering behaviour, thermal expansion and electrical conductivity. Journal of the European Ceramic Society, 2017, 37, 661-669.	5.7	40

Jong-Eun Hong

#	Article	IF	CITATIONS
37	Experimental Analysis on the Electrochemical Performance of Co-Electrolysis in Solid Oxide Cells Under Pressurized Operation Conditions. ECS Meeting Abstracts, 2017, , .	0.0	0
38	Microtubular SOFC using doped LaGaO ₃ electrolyte film prepared with dip coating method. Journal of the Ceramic Society of Japan, 2015, 123, 182-186.	1.1	4
39	Accurate and Precise Measurement of Oxygen Isotopic Fractions and Diffusion Profiles by Selective Attenuation of Secondary Ions (SASI). Analytical Chemistry, 2015, 87, 2907-2915.	6.5	11
40	Properties of Spinel Protective Coatings Prepared Using Wet Powder Spraying for SOFC Interconnects. ECS Transactions, 2015, 68, 1581-1587.	0.5	5
41	Effects of Three-Dimensional Strain on Electric Conductivity in Au-Dispersed Pr _{1.90} Ni _{0.71} Cu _{0.24} Ga _{0.05} O _{4+δ} . Journal of Physical Chemistry C, 2015, 119, 5-13.	3.1	14
42	Decreased sintering temperature of anode-supported solid oxide fuel cells with La-doped CeO2 and Sr- and Mg-doped LaGaO3 films by Co addition. Journal of Power Sources, 2014, 259, 282-288.	7.8	16
43	Increased Power Density of Solid Oxide Fuel Cells Using LaGaO3Film Prepared by Screen Printing Method with (Ba,La)CoO3-l´and Pr1.9(Ni,Cu,Ga)O4+l´Composite Oxide Cathode. Journal of the Electrochemical Society, 2014, 161, F1118-F1123.	2.9	0
44	Effects of transition metal addition on sintering and electrical conductivity of La-doped CeO2 as buffer layer for doped LaGaO3 electrolyte film. Solid State Ionics, 2014, 262, 374-377.	2.7	11
45	(La,Ba)CoO3 and Pr1.9(Ni,Cu,Ga)O4 Composite Oxide as Active Cathode for Intermediate Temperature Solid Oxide Fuel Cells Using Doped LaGaO3 Electrolyte Films. ECS Transactions, 2013, 57, 1793-1799.	0.5	0
46	Ce(Mn,Fe)O ₂ as An Effective Interlayer for Intermediate Temperature SOFCs Using Doped LaGaO ₃ Films Prepared by Screen Printing Method. Journal of the Electrochemical Society, 2013, 160, F375-F380.	2.9	12
47	Ni–Fe bimetallic cathodes for intermediate temperature CO2 electrolyzers using a La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. Journal of Materials Chemistry A, 2013, 1, 12455.	10.3	46
48	New buffer layer material La(Pr)CrO3for intermediate temperature solid oxide fuel cell using LaGaO3-based electrolyte film. Journal of Materials Research, 2012, 27, 1906-1914.	2.6	6
49	Titaniaâ€Added <scp><scp>Ce</scp></scp> _{0.6} <scp><scp>La</scp></scp> _{0.4} <scp><scp>O</scp>for the Buffer Layer of Highâ€Performance Solid Oxide Fuel Cells Using Doped Lanthanum Gallate Electrolyte Film, Iournal of the American Ceramic Society, 2012, 95, 3588-3596.</scp>	scp>	·2â^'î́
50	Preparation of LaGaO3 thin film for intermediate temperature SOFC by screen printing method (I). lonics, 2012, 18, 433-439.	2.4	8
51	Improved sintering and electrical properties of La-doped CeO2 buffer layer for intermediate temperature solid oxide fuel cells using doped LaGaO3 film prepared by screen printing process. Journal of Solid State Electrochemistry, 2012, 16, 1493-1502.	2.5	12
52	Improved power generation performance of solid oxide fuel cells using doped LaGaO3 electrolyte films prepared by screen printing method II. Optimization of Ni–CeO.8SmO.2O1.9 cermet anode support. International Journal of Hydrogen Energy, 2011, 36, 14632-14642.	7.1	19
53	Characteristics of a Protective Coating on Metal Interconnect for SOFCs. ECS Transactions, 2009, 25, 1393-1396.	0.5	2