
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8676536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene oxide incorporating carbon fibre-reinforced composites submitted to simultaneous impact and fire: Physicochemical characterisation and toxicology of the by-products. Journal of Hazardous Materials, 2022, 424, 127544.	6.5	9
2	Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient?. Advanced Drug Delivery Reviews, 2022, 183, 114173.	6.6	44
3	Experimental and Computational Nanotoxicology—Complementary Approaches for Nanomaterial Hazard Assessment. Nanomaterials, 2022, 12, 1346.	1.9	17
4	Short Preirradiation of TiO ₂ Nanoparticles Increases Cytotoxicity on Human Lung Coculture System. Chemical Research in Toxicology, 2021, 34, 733-742.	1.7	6
5	Combined effects of nanoparticles and other environmental contaminants on human health - an issue often overlooked. NanoImpact, 2021, 23, 100344.	2.4	23
6	Relationship between Occupational Exposure to Airborne Nanoparticles, Nanoparticle Lung Burden and Lung Diseases. Toxics, 2021, 9, 204.	1.6	14
7	Graphene-Based Materials <i>In Vitro</i> Toxicity and Their Structure–Activity Relationships: A Systematic Literature Review. Chemical Research in Toxicology, 2021, 34, 2003-2018.	1.7	28
8	Assessing biological oxidative damage induced by graphene-based materials: An asset for grouping approaches using the FRAS assay. Regulatory Toxicology and Pharmacology, 2021, 127, 105067.	1.3	4
9	Structure–Activity Relationship of Graphene-Based Materials: Impact of the Surface Chemistry, Surface Specific Area and Lateral Size on Their In Vitro Toxicity. Nanomaterials, 2021, 11, 2963.	1.9	12
10	Exploring graphene-based materials' genotoxicity: inputs of a screening method. Nanotoxicology, 2021, 15, 1279-1294.	1.6	4
11	A valuable experimental setup to model exposure to Legionella's aerosols generated by shower-like systems. Water Research, 2020, 172, 115496.	5.3	13
12	Impact of the Physicochemical Features of TiO ₂ Nanoparticles on Their <i>In Vitro</i> Toxicity. Chemical Research in Toxicology, 2020, 33, 2324-2337.	1.7	33
13	Influence of the physicochemical features of TiO ₂ nanoparticles on the formation of a protein corona and impact on cytotoxicity. RSC Advances, 2020, 10, 43950-43959.	1.7	8
14	Quantitative Flow Cytometric Evaluation of Oxidative Stress and Mitochondrial Impairment in RAW 264.7 Macrophages after Exposure to Pristine, Acid Functionalized, or Annealed Carbon Nanotubes. Nanomaterials, 2020, 10, 319.	1.9	8
15	Elemental fingerprint of human amniotic fluids and relationship with potential sources of maternal exposure. Journal of Trace Elements in Medicine and Biology, 2020, 60, 126477.	1.5	6
16	Direct oral anticoagulants are associated with limited damage of endothelial cells of the blood-brain barrier mediated by the thrombin/PAR-1 pathway. Brain Research, 2019, 1719, 57-63.	1.1	16
17	Importance of Choosing Relevant Biological End Points To Predict Nanoparticle Toxicity with Computational Approaches for Human Health Risk Assessment. Chemical Research in Toxicology, 2019, 32, 1320-1326.	1.7	27
18	Towards an alternative to nano-QSAR for nanoparticle toxicity ranking in case of small datasets. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	16

#	Article	IF	CITATIONS
19	Nano to micron-sized particle detection in patients' lungs and its pathological significance. Environmental Science: Nano, 2019, 6, 1343-1350.	2.2	7
20	E-cigarettes: from nicotine to cannabinoids, the French situation. Lancet Respiratory Medicine,the, 2018, 6, e16.	5.2	6
21	A method for the quantitative extraction of gold nanoparticles from human bronchoalveolar lavage fluids through a glycerol gradient. Nanoscale, 2018, 10, 2955-2969.	2.8	7
22	Deposition pattern of aerosolized Legionella using an ex vivo human-porcine respiratory model. International Journal of Hygiene and Environmental Health, 2018, 221, 252-259.	2.1	9
23	<i>Ex vivo</i> detection and quantification of gold nanoparticles in human seminal and follicular fluids. Analyst, The, 2018, 143, 475-486.	1.7	7
24	Assessment of HBEC-5i endothelial cell line cultivated in astrocyte conditioned medium as a human blood-brain barrier model for ABC drug transport studies. International Journal of Pharmaceutics, 2018, 551, 281-289.	2.6	38
25	Impact of silica nanoparticle surface chemistry on protein corona formation and consequential interactions with biological cells. Materials Science and Engineering C, 2017, 75, 16-24.	3.8	79
26	Biological Monitoring of Inhaled Nanoparticles in Patients: An Appealing Approach To Study Causal Link between Human Respiratory Pathology and Exposure to Nanoparticles. Chemical Research in Toxicology, 2017, 30, 1655-1660.	1.7	11
27	Metal load assessment in patient pulmonary lavages: towards a comprehensive mineralogical analysis including the nano-sized fraction. Nanotoxicology, 2017, 11, 1211-1224.	1.6	9
28	Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: A too simplistic explanation that does not take into account the nanoparticle protein corona. Materials Science and Engineering C, 2017, 70, 889-896.	3.8	145
29	Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicology in Vitro, 2017, 38, 136-141.	1.1	107
30	Impact of the chemical composition of poly-substituted hydroxyapatite particles on the in vitro pro-inflammatory response of macrophages. Biomedical Microdevices, 2016, 18, 27.	1.4	11
31	The nanoparticle protein corona: The myth of average. Nano Today, 2016, 11, 700-703.	6.2	34
32	Detection and analysis of nanoparticles in patients: A critical review of the status quo of clinical nanotoxicology. Biomaterials, 2016, 76, 302-312.	5.7	35
33	Testicular biodistribution of silica-gold nanoparticles after intramuscular injection in mice. Biomedical Microdevices, 2015, 17, 66.	1.4	32
34	Metals distribution in colorectal biopsies: New insight on the elemental fingerprint of tumour tissue. Digestive and Liver Disease, 2015, 47, 602-607.	0.4	28
35	Electrostatic interactions favor the binding of positive nanoparticles on cells: A reductive theory. Nano Today, 2015, 10, 677-680.	6.2	70
36	Adsorption of Lactate Dehydrogenase Enzyme on Carbon Nanotubes: How to Get Accurate Results for the Cytotoxicity of These Nanomaterials. Langmuir, 2015, 31, 3635-3643.	1.6	25

#	Article	IF	CITATIONS
37	Thermal annealing of carbon nanotubes reveals a toxicological impact of the structural defects. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	19
38	Quantification of nanoparticle endocytosis based on double fluorescent pH-sensitive nanoparticles. Biomedical Microdevices, 2015, 17, 42.	1.4	9
39	In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization. Toxicology in Vitro, 2015, 30, 476-485.	1.1	49
40	Toxicity of boehmite nanoparticles: impact of the ultrafine fraction and of the agglomerates size on cytotoxicity and pro-inflammatory response. Inhalation Toxicology, 2014, 26, 545-553.	0.8	12
41	Adsorption at cell surface and cellular uptake of silica nanoparticles with different surface chemical functionalizations: impact on cytotoxicity. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	28
42	In vitro cellular responses to silicon carbide particles manufactured through the Acheson process: Impact of physico-chemical features on pro-inflammatory and pro-oxidative effects. Toxicology in Vitro, 2014, 28, 856-865.	1.1	12
43	Biological response to purification and acid functionalization of carbon nanotubes. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	24
44	Large-scale independent validation of the nuclear factor-kappa B p65 prognostic biomarker in prostate cancer. European Journal of Cancer, 2013, 49, 2441-2448.	1.3	40
45	Testicular biodistribution of 450Ânm fluorescent latex particles after intramuscular injection in mice. Biomedical Microdevices, 2013, 15, 427-436.	1.4	7
46	New insight into artifactual phenomena during in vitro toxicity assessment of engineered nanoparticles: Study of TNF-I± adsorption on alumina oxide nanoparticle. Toxicology in Vitro, 2013, 27, 1049-1056.	1.1	11
47	Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. Genes and Development, 2013, 27, 900-915.	2.7	158
48	In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	29
49	Quantitative cellular uptake of double fluorescent core-shelled model submicronic particles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	5
50	Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages <i>in vitro</i> . Inhalation Toxicology, 2012, 24, 580-588.	0.8	33
51	Abstract 4166: Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. , 2012, , .		0
52	Chemotherapy and Cryosurgery. , 2012, , 281-291.		0
53	Impact of acoustic airflow nebulization on intrasinus drug deposition of a human plastinated nasal cast: New insights into the mechanisms involved. International Journal of Pharmaceutics, 2011, 421, 63-71.	2.6	35

54 lκBâ€Kinaseâ€ἷμ (IKKε/IKKi/IκBKε) expression and localization in prostate cancer tissues. Prostate, 2011, 71, 1131±½138. 18

#	Article	IF	CITATIONS
55	Abstract 1061: Context dependent tumor suppressor activity of the ERK pathway explains its inverse correlation with malignancy in prostate neoplasms. , 2011, , .		0
56	Quantification of microsized fluorescent particles phagocytosis to a better knowledge of toxicity mechanisms. Inhalation Toxicology, 2010, 22, 1091-1100.	0.8	26
57	Optimisation and molecular signalling of apoptosis in sequential cryotherapy and chemotherapy combination in human A549 lung cancer xenografts in SCID mice. British Journal of Cancer, 2009, 100, 1896-1902.	2.9	19
58	Sequestration of Rb/E2F complex into PML-NBs provides a distinct mechanism to control the expression of E2F target genes. Cytokine, 2009, 48, 89.	1.4	0
59	Benefit of a combined treatment of cryotherapy and chemotherapy on tumour growth and late cryo-induced angiogenesis in a non-small-cell lung cancer model. Lung Cancer, 2006, 54, 79-86.	0.9	45
60	Effects of cryotherapy or chemotherapy on apoptosis in a non-small-cell lung cancer xenografted into SCID mice. Cryobiology, 2005, 50, 29-37.	0.3	61
61	In vivo cryochemotherapy of a human lung cancer model. Cryobiology, 2005, 51, 92-101.	0.3	27
62	Characterization of the focal adhesion complex in human non-small cell lung cancer cell lines. Anticancer Research, 2005, 25, 4135-9.	0.5	7