Andrey V Karlyshev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8676525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biotechnological and Ecological Potential of Micromonospora provocatoris sp. nov., a Gifted Strain Isolated from the Challenger Deep of the Mariana Trench. Marine Drugs, 2021, 19, 243.	2.2	10
2	Complete Genome Sequence of Campylobacter jejuni Strain G1, Isolated from a Patient with Guillain-Barré Syndrome. Microbiology Resource Announcements, 2021, 10, e0050521.	0.3	1
3	Draft Genome Sequence of Coralloluteibacterium stylophorae LMG 29479 T. Microbiology Resource Announcements, 2021, 10, e0042121.	0.3	1
4	S-layer protein 2 of vaginal Lactobacillus crispatus 2029 enhances growth, differentiation, VEGF production and barrier functions in intestinal epithelial cell line Caco-2. International Journal of Biological Macromolecules, 2021, 189, 410-419.	3.6	5
5	Whole genome sequencing of four bacterial strains from South Shetland Trench revealing biosynthetic and environmental adaptation gene clusters. Marine Genomics, 2020, 54, 100782.	0.4	11
6	The Effectiveness of Potential Probiotics Lactobacillus rhamnosus Vahe and Lactobacillus delbrueckii IAHAHI in Irradiated Rats Depends on the Nutritional Stage of the Host. Probiotics and Antimicrobial Proteins, 2020, 12, 1439-1450.	1.9	13
7	Whole Genome Sequence of Dermacoccus abyssi MT1.1 Isolated from the Challenger Deep of the Mariana Trench Reveals Phenazine Biosynthesis Locus and Environmental Adaptation Factors. Marine Drugs, 2020, 18, 131.	2.2	15
8	S-layer protein 2 of Lactobacillus crispatus 2029, its structural and immunomodulatory characteristics and roles in protective potential of the whole bacteria against foodborne pathogens. International Journal of Biological Macromolecules, 2020, 150, 400-412.	3.6	17
9	Cationic amphiphiles against <i>Gardnerella vaginalis</i> resistant strains and bacterial vaginosis-associated pathogens. Pathogens and Disease, 2019, 77, .	0.8	9
10	Remarkable Features of Mitochondrial DNA of Acanthamoeba polyphaga Linc Ap-1, Revealed by Whole-Genome Sequencing. Microbiology Resource Announcements, 2019, 8, .	0.3	8
11	Whole-Genome Sequencing of Xanthomonadaceae Strain Alg18-2.2, Isolated from the Saline Lake Gudzhirganskoe in the Republic of Buryatia, Russia. Microbiology Resource Announcements, 2019, 8, .	0.3	2
12	Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates. Frontiers in Microbiology, 2019, 10, 2847.	1.5	12
13	Binding of LcrV protein from Yersinia pestis to human T-cells induces apoptosis, which is completely blocked by specific antibodies. International Journal of Biological Macromolecules, 2019, 122, 1062-1070.	3.6	5
14	Expression of Escherichia coli araE and modified lacY genes in Campylobacter jejuni is not sufficient for arabinose transport. Access Microbiology, 2019, 1, e000042.	0.2	0
15	Cohnella kolymensis sp. nov., a novel bacillus isolated from Siberian permafrost. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 2912-2917.	0.8	16
16	The hidden perils of read mapping as a quality assessment tool in genome sequencing. Scientific Reports, 2017, 7, 43149.	1.6	5
17	Potential probiotic-associated traits revealed from completed high quality genome sequence of Lactobacillus fermentum 3872. Standards in Genomic Sciences, 2017, 12, 19.	1.5	21
18	CmeABC Multidrug Efflux Pump Contributes to Antibiotic Resistance and Promotes Campylobacter jejuni Survival and Multiplication in Acanthamoeba polyphaga. Applied and Environmental Microbiology, 2017, 83, .	1.4	34

#	Article	IF	CITATIONS
19	<i>Lactobacillus fermentum</i> 3872 as a potential tool for combatting <i>Campylobacter jejuni</i> infections. Virulence, 2017, 8, 1753-1760.	1.8	36
20	The role of apolipoprotein Nâ€acyl transferase, Lnt, in the lipidation of factor H binding protein of <i>Neisseria meningitidis</i> strain MC58 and its potential as a drug target. British Journal of Pharmacology, 2017, 174, 2247-2260.	2.7	16
21	Characterization of Lactobacillus fermentum UCO-979C, a probiotic strain with a potent anti-Helicobacter pylori activity. Electronic Journal of Biotechnology, 2017, 25, 75-83.	1.2	46
22	Draft Genome Sequence of Lactobacillus plantarum 2025. Genome Announcements, 2016, 4, .	0.8	1
23	Draft Genome Sequence of " <i>Cohnella kolymensis</i> ―B-2846. Genome Announcements, 2016, 4, .	0.8	1
24	YPTB3816 of Yersinia pseudotuberculosis strain IP32953 is a virulence-related metallo-oligopeptidase. BMC Microbiology, 2016, 16, 282.	1.3	1
25	Draft Genome Sequence of a Probiotic Strain, Lactobacillus fermentum UCO-979C. Genome Announcements, 2015, 3, .	0.8	4
26	Lactobacillus fermentum 3872 genome sequencing reveals plasmid and chromosomal genes potentially involved in a probiotic activity. FEMS Microbiology Letters, 2015, 362, .	0.7	21
27	Insight into proteomic investigations of Neisseria meningitidis serogroup C strain L91543 from analysis of its genome sequence. FEMS Microbiology Letters, 2015, 362, .	0.7	6
28	Specific genetic features of Campylobacter jejuni strain G1 revealed by genome sequencing. FEMS Microbiology Letters, 2015, 362, 1-3.	0.7	4
29	Campylobacter–Acanthamoeba interactions. Microbiology (United Kingdom), 2015, 161, 933-947.	0.7	21
30	Biological Roles of the O-Methyl Phosphoramidate Capsule Modification in Campylobacter jejuni. PLoS ONE, 2014, 9, e87051.	1.1	48
31	Draft Genome Sequence of Bacillus subtilis strain KATMIRA1933. Genome Announcements, 2014, 2, .	0.8	9
32	Draft Genome Sequence of Enterococcus faecalis MB5259. Genome Announcements, 2014, 2, .	0.8	0
33	Draft Genome Sequence of Lactobacillus crispatus 2029. Genome Announcements, 2014, 2, .	0.8	4
34	Draft Genome Sequence of Bacillus amyloliquefaciens B-1895. Genome Announcements, 2014, 2, .	0.8	15
35	Draft Genome Sequence of Lactobacillus rhamnosus 2166. Genome Announcements, 2014, 2, .	0.8	0
36	Probiotic Properties of Lactobacillus crispatus 2,029: Homeostatic Interaction with Cervicovaginal Epithelial Cells and Antagonistic Activity to Genitourinary Pathogens. Probiotics and Antimicrobial Proteins, 2014, 6, 165-176.	1.9	41

ANDREY V KARLYSHEV

#	Article	IF	CITATIONS
37	Draft Genome Sequence of Lactobacillus plantarum 2165. Genome Announcements, 2014, 2, .	0.8	3
38	A negative effect of Campylobacter capsule on bacterial interaction with an analogue of a host cell receptor. BMC Microbiology, 2014, 14, 141.	1.3	12
39	<i>Campylobacter jejuni</i> gene <i>cj0511</i> encodes a serine peptidase essential for colonisation. FEBS Open Bio, 2014, 4, 468-472.	1.0	23
40	Unusual features in organisation of capsular polysaccharide-related genes of C. jejuni strain X. Gene, 2013, 522, 37-45.	1.0	11
41	Draft Genome Sequence of Lactobacillus gasseri Strain 2016. Genome Announcements, 2013, 1, .	0.8	0
42	Draft Genome Sequence of Lactobacillus jensenii Strain MD IIE-70(2). Genome Announcements, 2013, 1, .	0.8	3
43	Draft Genome Sequence of Lactobacillus fermentum Strain 3872. Genome Announcements, 2013, 1, .	0.8	13
44	Draft Genome Sequence of Corynebacterium pseudodiphtheriticum Strain 090104 "Sokolov― Genome Announcements, 2013, 1, .	0.8	12
45	Molecular mechanisms and biological role of <i>Campylobacter jejuni</i> attachment to host cells. European Journal of Microbiology and Immunology, 2012, 2, 32-40.	1.5	31
46	Putative mechanisms and biological role of coccoid form formation in <i>Campylobacter jejuni</i> . European Journal of Microbiology and Immunology, 2012, 2, 41-49.	1.5	27
47	Yersinia pseudotuberculosis mntH functions in intracellular manganese accumulation, which is essential for virulence and survival in cells expressing functional Nramp1. Microbiology (United) Tj ETQq1 1 0.78	843 04 7rgB⁻	[/Qmerlock 10
48	Insect Infection Model for <i>Campylobacter jejuni</i> Reveals That <i>O</i> â€methyl Phosphoramidate Has Insecticidal Activity. Journal of Infectious Diseases, 2010, 201, 100129142112076-000.	1.9	72
49	Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology (United Kingdom), 2009, 155, 1516-1522.	0.7	91
50	<i>Campylobacter jejuni</i> Glycosylation Island Important in Cell Charge, Legionaminic Acid Biosynthesis, and Colonization of Chickens. Infection and Immunity, 2009, 77, 2544-2556.	1.0	121
51	<i>Campylobacter jejuni</i> Cocultured with Epithelial Cells Reduces Surface Capsular Polysaccharide Expression. Infection and Immunity, 2009, 77, 1959-1967.	1.0	37
52	Steps toward broad-spectrum therapeutics: discovering virulence-associated genes present in diverse human pathogens. BMC Genomics, 2009, 10, 501.	1.2	18
53	Commonality and Biosynthesis of the O-Methyl Phosphoramidate Capsule Modification in Campylobacter jejuni. Journal of Biological Chemistry, 2007, 282, 28566-28576.	1.6	86
54	Biofilm formation in Campylobacter jejuni. Microbiology (United Kingdom), 2006, 152, 387-396.	0.7	215

ANDREY V KARLYSHEV

#	Article	IF	CITATIONS
55	The <i>Campylobacter jejuni</i> glycome. FEMS Microbiology Reviews, 2005, 29, 377-390.	3.9	24
56	Functional analysis of theCampylobacter jejuniN-linked protein glycosylation pathway. Molecular Microbiology, 2005, 55, 1695-1703.	1.2	193
57	The glycome. FEMS Microbiology Reviews, 2005, 29, 377-390.	3.9	88
58	Development and Application of an Insertional System for Gene Delivery and Expression in Campylobacter jejuni. Applied and Environmental Microbiology, 2005, 71, 4004-4013.	1.4	93
59	Signature-tagged Mutagenesis of Yersinia pestis. Advances in Experimental Medicine and Biology, 2004, 529, 39-42.	0.8	4
60	Adaptation of Campylobacter jejuni NCTC11168 to High-Level Colonization of the Avian Gastrointestinal Tract. Infection and Immunity, 2004, 72, 3769-3776.	1.0	162
61	The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology (United Kingdom), 2004, 150, 1957-1964.	0.7	162
62	Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Molecular Microbiology, 2004, 55, 90-103.	1.2	162
63	A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology (United Kingdom), 2003, 149, 3221-3229.	0.7	120
64	Further strategies for signature-tagged mutagenesis and the application of oligonucleotide microarrays for the quantification of DNA-tagged strains. Methods in Microbiology, 2002, 33, 167-184.	0.4	0
65	Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Molecular Microbiology, 2002, 35, 529-541.	1.2	228
66	Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Molecular Microbiology, 2002, 43, 497-508.	1.2	121
67	A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology (United Kingdom), 2002, 148, 473-480.	0.7	149
68	Deciphering Campylobacter jejuni cell surface interactions from the genome sequence. Current Opinion in Microbiology, 2001, 4, 35-40.	2.3	43
69	Post genome analysis of Campylobacter jejuni. Journal of Applied Microbiology, 2001, 90, 36S-44S.	1.4	14
70	Genome sequence of Yersinia pestis, the causative agent of plague. Nature, 2001, 413, 523-527.	13.7	1,144
71	Demonstration of Polysaccharide Capsule in Campylobacter jejuni Using Electron Microscopy. Infection and Immunity, 2001, 69, 5921-5924.	1.0	76
72	Detection and Initial Characterization of Novel Capsular Polysaccharide among Diverse Campylobacter jejuni Strains Using Alcian Blue Dye. Journal of Clinical Microbiology, 2001, 39, 279-284.	1.8	81

ANDREY V KARLYSHEV

#	Article	IF	CITATIONS
73	Application of High-Density Array-Based Signature-Tagged Mutagenesis To Discover Novel Yersinia Virulence-Associated Genes. Infection and Immunity, 2001, 69, 7810-7819.	1.0	91
74	Whole Genome Comparison of Campylobacter jejuni Human Isolates Using a Low-Cost Microarray Reveals Extensive Genetic Diversity. Genome Research, 2001, 11, 1706-1715.	2.4	278
75	Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Molecular Microbiology, 2000, 35, 1120-1134.	1.2	128
76	The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature, 2000, 403, 665-668.	13.7	1,869
77	Single-Primer PCR Procedure for Rapid Identification of Transposon Insertion Sites. BioTechniques, 2000, 28, 1078-1082.	0.8	90
78	Procedure for the Investigation of Bacterial Genomes: Random Shot-Gun Cloning, Sample Sequencing and Mutagenesis of Campylobacter jejuni. BioTechniques, 1999, 26, 50-56.	0.8	11
79	Structural and Functional Significance of the FGL Sequence of the Periplasmic Chaperone Caf1M of <i>Yersinia pestis</i> . Journal of Bacteriology, 1999, 181, 2422-2429.	1.0	30
80	An improved physical and genetic map of Campylobacter jejuni NCTC 11168 (UA580). Microbiology (United Kingdom), 1998, 144, 503-508.	0.7	19
81	Influence of the conserved disulphide bond, exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like molecular chaperone Caf1M of <i>Yersinia pestis</i> . Biochemical Journal, 1997, 324, 571-578.	1.7	44
82	Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. Journal of Bacteriology, 1997, 179, 5271-5281.	1.0	381
83	Study of the intergenicexeF-exeGregion and its application as a simple preliminary test forAeromonasspp FEMS Microbiology Letters, 1996, 137, 37-44.	0.7	6
84	Virulent non-capsulate Yersinia pestis variants constructed by insertion mutagenesis. Journal of Medical Microbiology, 1995, 42, 264-268.	0.7	65
85	Cloning and study of the genetic organization of the exe gene cluster of Aeromonas salmonicida. Gene, 1995, 158, 77-82.	1.0	32
86	Specific high affinity binding of human interleukin 1β by Caf1A usher protein ofYersinia pestis. FEBS Letters, 1995, 371, 65-68.	1.3	64
87	A new gene of the Æ'1 operon of Y. pestis involved in the capsule biogenesis. FEBS Letters, 1992, 297, 77-80.	1.3	80
88	Caf1Rgene and its role in the regulation of capsule formation ofY. pestis. FEBS Letters, 1992, 305, 37-40.	1.3	55
89	Expression of the envelope antigen F1 of Yersinia pestis is mediated by the product of caf1M gene having homology with the chaperone protein PapD of Escherichia coli. FEBS Letters, 1991, 286, 79-82.	1.3	91
90	Nucleotide sequence of theYersinia pestisgene encoding F1 antigen and the primary structure of the protein. FEBS Letters, 1990, 277, 230-232.	1.3	106

#	Article	IF	CITATIONS
91	Regulation of restriction endonuclease activity with antibiotics. Advances in Enzyme Regulation, 1979, 17, 307-321.	2.9	8
92	Protection of particular cleavage sites of restriction endonucleases by distamycin A and actinomycin D. Nucleic Acids Research, 1976, 3, 2293-2302.	6.5	60
93	<i>Campylobacter jejuni</i> Capsular Polysaccharide. , 0, , 505-521.		3
94	Complete Genome Sequencing of Campylobacter jejuni Strain X Reveals the Presence of pVir- and pTet-like Plasmids. Microbiology Resource Announcements, 0, , .	0.3	1