Bassem Assfour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675994/publications.pdf

Version: 2024-02-01

		686830	887659
17	640 citations	13	17
papers	citations	h-index	g-index
17	17	17	1100
17	17	17	1108
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-Pressure in Situ ¹²⁹ Xe NMR Spectroscopy and Computer Simulations of Breathing Transitions in the Metal–Organic Framework Ni ₂ (2,6-ndc) ₂ (dabco) (DUT-8(Ni)). Journal of the American Chemical Society, 2011, 133, 8681-8690.	6.6	113
2	Packings of Carbon Nanotubes – New Materials for Hydrogen Storage. Advanced Materials, 2011, 23, 1237-1241.	11.1	76
3	Hydrogen Adsorption Sites in Zeolite Imidazolate Frameworks ZIF-8 and ZIF-11. Journal of Physical Chemistry C, 2010, 114, 13381-13384.	1.5	66
4	Adsorption of hydrogen in covalent organic frameworks: Comparison of simulations and experiments. Microporous and Mesoporous Materials, 2010, 133, 59-65.	2.2	58
5	In silico screening of metal organic framework for iodine capture and storage. Chemical Physics Letters, 2014, 610-611, 45-49.	1.2	54
6	Hydrogen in the Metalâ^'Organic Framework Cr MIL-53. Journal of Physical Chemistry C, 2010, 114, 10648-10655.	1.5	51
7	Metal organic framework MIL-101 for radioiodine capture and storage. Journal of Nuclear Materials, 2017, 493, 6-11.	1.3	39
8	Hydrogen storage in zeolite imidazolate frameworks. A multiscale theoretical investigation. International Journal of Hydrogen Energy, 2011, 36, 6005-6013.	3.8	38
9	Hydrogen adsorption sites and energies in 2D and 3D covalent organic frameworks. Chemical Physics Letters, 2010, 489, 86-91.	1.2	27
10	Metal Organic Framework MIL-101(Cr): Spectroscopic Investigations to Reveal Iodine Capture Mechanism. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1218-1230.	1.9	26
11	Hydrogen storage in 1D nanotube-like channels metal–organic frameworks: Effects of free volume and heat of adsorption on hydrogen uptake. International Journal of Hydrogen Energy, 2009, 34, 8135-8143.	3.8	23
12	Polymorphs of lithium-boron imidazolates: energy landscape and hydrogen storage properties. Dalton Transactions, 2011, 40, 3796-3798.	1.6	22
13	Toward two-dimensional hybrid organic-inorganic materials based on a I-PE/UHV-PVD system for exceptional corrosion protection. Applied Materials Today, 2021, 24, 101142.	2.3	21
14	Novel experimental methods for assessment of hydrogen storage capacity and modelling of sorption in Cu-BTC. International Journal of Hydrogen Energy, 2010, 35, 11042-11051.	3.8	11
15	Spectroscopic investigations of gamma-ray irradiation effects on metal organic framework. Journal of Materials Science, 2021, 56, 12154-12170.	1.7	9
16	Combined IR absorption and modeling study of nanoporous zeolite imidazolate frameworks (ZIFs) filled with hydrogen. RSC Advances, 2012, 2, 9839.	1.7	4
17	Separation of noble gases through nano porous material membranes. Annals of Nuclear Energy, 2020, 148, 107730.	0.9	2