Cyril Reboul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/86759/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin D3 Supplementation Alleviates Left Ventricular Dysfunction in a Mouse Model of Diet-Induced Type 2 Diabetes: Potential Involvement of Cardiac Lipotoxicity Modulation. Cardiovascular Drugs and Therapy, 2022, 36, 245-256.	2.6	6
2	Digestive nâ€6 Lipid Oxidation, a Key Trigger of Vascular Dysfunction and Atherosclerosis in the Western Diet: Protective Effects of Apple Polyphenols. Molecular Nutrition and Food Research, 2021, 65, e2000487.	3.3	13
3	Increased protein S-nitrosylation in mitochondria: a key mechanism of exercise-induced cardioprotection. Basic Research in Cardiology, 2021, 116, 66.	5.9	8
4	Sinapine, but not sinapic acid, counteracts mitochondrial oxidative stress in cardiomyocytes. Redox Biology, 2020, 34, 101554.	9.0	33
5	Exercise training protects the heart against ischemia-reperfusion injury: A central role for mitochondria?. Free Radical Biology and Medicine, 2020, 152, 395-410.	2.9	20
6	Exercise training restores eNOS activation in the perivascular adipose tissue of obese rats: Impact on vascular function. Nitric Oxide - Biology and Chemistry, 2019, 86, 63-67.	2.7	30
7	Cardiac remodeling and higher sensitivity to ischemia–reperfusion injury in female rats submitted to high-fat high-sucrose diet: An in vivo/ex vivo longitudinal follow-up. Journal of Nutritional Biochemistry, 2019, 69, 139-150.	4.2	6
8	Early calcium handling imbalance in pressure overload-induced heart failure with nearly normal left ventricular ejection fraction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 230-242.	3.8	29
9	Stress-induced protein S-glutathionylation and phosphorylation crosstalk in cardiac sarcomeric proteins - Impact on heart function. International Journal of Cardiology, 2018, 258, 207-216.	1.7	21
10	Vascular endothelial function masks increased sympathetic vasopressor activity in rats with metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H497-H507.	3.2	23
11	Key role of endothelium in the eNOS-dependent cardioprotection with exercise training. Journal of Molecular and Cellular Cardiology, 2017, 102, 26-30.	1.9	27
12	Acute hyperglycemia impairs flow-mediated dilatation through an increase in vascular oxidative stress: winter is coming for excess sugar consumption. Journal of Thoracic Disease, 2016, 8, E1103-E1105.	1.4	0
13	Endurance training prevents negative effects of the hypoxia mimetic dimethyloxalylglycine on cardiac and skeletal muscle function. Journal of Applied Physiology, 2016, 120, 455-463.	2.5	8
14	Exercise does not activate the β3 adrenergic receptor–eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. Basic Research in Cardiology, 2016, 111, 40.	5.9	36
15	Endothelial function does not improve with high-intensity continuous exercise training in SHR: implications of eNOS uncoupling. Hypertension Research, 2016, 39, 70-78.	2.7	29
16	NO Better Way to Protect the Heart during Ischemiaââ,¬â€œReperfusion: To be in the Right Place at the Right Time. Frontiers in Pediatrics, 2015, 3, 6.	1.9	7
17	Carbon monoxide increases inducible NOS expression that mediates CO-induced myocardial damage during ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H759-H767.	3.2	29
18	Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Research in Cardiology, 2013, 108, 389.	5.9	60

CYRIL REBOUL

#	Article	IF	CITATIONS
19	Subendocardial Increase in Reactive Oxygen Species Production Affects Regional Contractile Function in Ischemic Heart Failure. Antioxidants and Redox Signaling, 2013, 18, 1009-1020.	5.4	27
20	Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress. Basic Research in Cardiology, 2011, 106, 1235-1246.	5.9	26
21	Carbon Monoxide Pollution Impairs Myocardial Perfusion Reserve: Implication of Coronary Endothelial Dysfunction. Cardiovascular Toxicology, 2011, 11, 334-340.	2.7	4
22	β-Adrenergic receptors desensitization is not involved in exercise-induced cardiac fatigue: NADPH oxidase-induced oxidative stress as a new trigger. Journal of Applied Physiology, 2011, 111, 1242-1248.	2.5	25
23	Carbon Monoxide Pollution Promotes Cardiac Remodeling and Ventricular Arrhythmia in Healthy Rats. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 587-595.	5.6	77
24	Late exercise training improves non-uniformity of transmural myocardial function in rats with ischaemic heart failure. Cardiovascular Research, 2009, 81, 555-564.	3.8	46
25	Alteration of endothelium-mediated vasodilator response in the rat hindlimb vasculature consecutive to chronic hypoxic stress: NO and EDHF involvement. Vascular Pharmacology, 2009, 51, 154-161.	2.1	5
26	Chronic exercise does not prevent hypoxia-induced increased aortic sensitivity to endothelin in rats. Vascular Pharmacology, 2006, 44, 333-337.	2.1	1
27	Training does not affect the alteration in pulmonary artery vasoreactivity in pulmonary hypertensive rats. European Journal of Pharmacology, 2005, 527, 121-128.	3.5	25
28	Altitude negates the benefits of aerobic training on the vascular adaptations in rats. Medicine and Science in Sports and Exercise, 2005, 37, 979-85.	0.4	11