List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675859/publications.pdf Version: 2024-02-01

		331259	414034
32	4,526	21	32
papers	citations	h-index	g-index
32	32	32	4333
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Emerging roles of phosphoinositide-associated membrane trafficking in plant stress responses. Journal of Genetics and Genomics, 2022, 49, 726-734.	1.7	4
2	The transcription factor OsMYBc and an E3 ligase regulate expression of a K+ transporter during salt stress. Plant Physiology, 2022, 190, 843-859.	2.3	15
3	Rice shaker potassium channel <scp>OsAKT2</scp> positively regulates salt tolerance and grain yield by mediating K ⁺ redistribution. Plant, Cell and Environment, 2021, 44, 2951-2965.	2.8	41
4	Seed specifically over-expressing DGAT2A enhances oil and linoleic acid contents in soybean seeds. Biochemical and Biophysical Research Communications, 2021, 568, 143-150.	1.0	14
5	A bHLH protein, OsBIM1, positively regulates rice leaf angle by promoting brassinosteroid signaling. Biochemical and Biophysical Research Communications, 2021, 578, 129-135.	1.0	9
6	HSP70-3 Interacts with Phospholipase Dδand Participates in Heat Stress Defense. Plant Physiology, 2021, 185, 1148-1165.	2.3	27
7	An endoplasmic reticulum–localized cytochrome <i>b</i> ₅ regulates high-affinity K ⁺ transport in response to salt stress in rice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
8	Involvement of Arabidopsis phospholipase D \hat{l}' in regulation of ROS-mediated microtubule organization and stomatal movement upon heat shock. Journal of Experimental Botany, 2020, 71, 6555-6570.	2.4	29
9	Phosphatidic acid directly binds with rice potassium channel OsAKT2 to inhibit its activity. Plant Journal, 2020, 102, 649-665.	2.8	30
10	Multiple basic amino acid residues contribute to phosphatidic acid-mediated inhibition of rice potassium channel OsAKT2. Plant Signaling and Behavior, 2020, 15, 1789818.	1.2	2
11	Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. Plant Science, 2019, 287, 110190.	1.7	37
12	Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nature Plants, 2019, 5, 1012-1021.	4.7	73
13	Genome-wide analysis and functional characterization of Acyl-CoA:diacylglycerol acyltransferase from soybean identify GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. Journal of Plant Physiology, 2019, 242, 153019.	1.6	24
14	Rice qGL3/OsPPKL1 Functions with the GSK3/SHAGGY-Like Kinase OsGSK3 to Modulate Brassinosteroid Signaling. Plant Cell, 2019, 31, 1077-1093.	3.1	106
15	Phosphatidic Acid Directly Regulates PINOID-Dependent Phosphorylation and Activation of the PIN-FORMED2 Auxin Efflux Transporter in Response to Salt Stress. Plant Cell, 2019, 31, 250-271.	3.1	97
16	A phosphoinositideâ€specific phospholipase C pathway elicits stressâ€induced Ca ²⁺ signals and confers salt tolerance to rice. New Phytologist, 2017, 214, 1172-1187.	3.5	85
17	Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in <i>Arabidopsis</i> . Plant, Cell and Environment, 2017, 40, 2220-2235.	2.8	45
18	The potassium transporter <scp>O</scp> s <scp>HAK</scp> 21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant, Cell and Environment, 2015, 38, 2766-2779.	2.8	155

#	Article	IF	CITATIONS
19	The Rice High-Affinity Potassium Transporter1;1 Is Involved in Salt Tolerance and Regulated by an MYB-Type Transcription Factor. Plant Physiology, 2015, 168, 1076-1090.	2.3	206
20	Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis. Journal of Plant Research, 2015, 128, 211-220.	1.2	70
21	Characterization and Mapping of a Saltâ€6ensitive Mutant in Rice (<i>Oryza sativa</i> L.). Journal of Integrative Plant Biology, 2013, 55, 504-513.	4.1	18
22	The Rice Diacylglycerol Kinase Family: Functional Analysis Using Transient RNA Interference. Frontiers in Plant Science, 2012, 3, 60.	1.7	21
23	Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with Phospholipase Dδ to Transduce Hydrogen Peroxide Signals in the <i>Arabidopsis</i> Response to Stress. Plant Cell, 2012, 24, 2200-2212.	3.1	202
24	Phosphatidic Acid Regulates Microtubule Organization by Interacting with MAP65-1 in Response to Salt Stress in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4555-4576.	3.1	219
25	Phosphatidic acid mediates salt stress response by regulation of MPK6 in <i>Arabidopsis thaliana</i> . New Phytologist, 2010, 188, 762-773.	3.5	387
26	Phospholipase Dα1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2009, 21, 2357-2377.	3.1	517
27	A Bifurcating Pathway Directs Abscisic Acid Effects on Stomatal Closure and Opening in Arabidopsis. Science, 2006, 312, 264-266.	6.0	375
28	Signaling functions of phosphatidic acid. Progress in Lipid Research, 2006, 45, 250-278.	5.3	647
29	Phospholipase DÂ1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9508-9513.	3.3	476
30	The plasma membrane–bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnology, 2004, 22, 427-433.	9.4	310
31	The Oleate-Stimulated Phospholipase D, PLDÂ, and Phosphatidic Acid Decrease H2O2-Induced Cell Death in Arabidopsis. Plant Cell, 2003, 15, 2285-2295.	3.1	251
32	H+â€atpase and H+â€transport activities in tonoplast vesicles from barley roots under salt stress and influence of calcium and abscisic acid1. Journal of Plant Nutrition, 1998, 21, 447-458.	0.9	7