
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675664/publications.pdf Version: 2024-02-01

DASCAL MÃBED

#	Article	IF	CITATIONS
1	A new class of anthelmintics effective against drug-resistant nematodes. Nature, 2008, 452, 176-180.	13.7	437
2	Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics, 2005, 21, 1846-1852.	1.8	275
3	A Nucleoside Transporter from Trypanosoma brucei Involved in Drug Resistance. Science, 1999, 285, 242-244.	6.0	245
4	Phenotyping and genotyping of Haemonchus contortus isolates reveals a new putative candidate mutation for benzimidazole resistance in nematodes. Veterinary Parasitology, 2007, 144, 313-320.	0.7	223
5	Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends in Parasitology, 2013, 29, 110-118.	1.5	207
6	Mechanisms of Arsenical and Diamidine Uptake and Resistance in Trypanosoma brucei. Eukaryotic Cell, 2003, 2, 1003-1008.	3.4	186
7	The genome of the heartworm, <i>Dirofilaria immitis</i> , reveals drug and vaccine targets. FASEB Journal, 2012, 26, 4650-4661.	0.2	124
8	100 Years of Suramin. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	121
9	Loss of the High-Affinity Pentamidine Transporter Is Responsible for High Levels of Cross-Resistance between Arsenical and Diamidine Drugs in African Trypanosomes. Molecular Pharmacology, 2007, 71, 1098-1108.	1.0	113
10	Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. Journal of Antimicrobial Chemotherapy, 2014, 69, 651-663.	1.3	106
11	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	3.3	94
12	New Drugs for Human African Trypanosomiasis: A Twenty First Century Success Story. Tropical Medicine and Infectious Disease, 2020, 5, 29.	0.9	83
13	Genetic variants of the TbAT1 adenosine transporter from African trypanosomes in relapse infections following melarsoprol therapy. Molecular and Biochemical Parasitology, 2001, 117, 73-81.	0.5	81
14	Antiprotozoal Activity Profiling of Approved Drugs: A Starting Point toward Drug Repositioning. PLoS ONE, 2015, 10, e0135556.	1.1	81
15	Drug Discovery for Kinetoplastid Diseases: Future Directions. ACS Infectious Diseases, 2019, 5, 152-157.	1.8	78
16	Chemotherapeutic Strategies Against Trypanosoma brucei: Drug Targets vs. Drug Targeting. Current Pharmaceutical Design, 2007, 13, 555-567.	0.9	72
17	Antiparasitic agents: new drugs on the horizon. Current Opinion in Pharmacology, 2012, 12, 562-566.	1.7	72
18	In vitro selection of Haemonchus contortus for benzimidazole resistance reveals a mutation at amino acid 198 of β-tubulin. Molecular and Biochemical Parasitology, 2009, 168, 120-122.	0.5	64

#	Article	IF	CITATIONS
19	Aquaporin 2 Mutations in Trypanosoma brucei gambiense Field Isolates Correlate with Decreased Susceptibility to Pentamidine and Melarsoprol. PLoS Neglected Tropical Diseases, 2013, 7, e2475.	1.3	63
20	Drug transport and drug resistance in African trypanosomes. Drug Resistance Updates, 2003, 6, 281-290.	6.5	60
21	Inhibitors of PEX14 disrupt protein import into glycosomes and kill <i>Trypanosoma</i> parasites. Science, 2017, 355, 1416-1420.	6.0	59
22	Pyrimidine Salvage in <i>Trypanosoma brucei</i> Bloodstream Forms and the Trypanocidal Action of Halogenated Pyrimidines. Molecular Pharmacology, 2013, 83, 439-453.	1.0	57
23	Molecular Pharmacology of Adenosine Transport in Trypanosoma brucei: P1/P2 Revisited. Molecular Pharmacology, 2005, 68, 589-595.	1.0	49
24	Genome-Wide Identification of Molecular Mimicry Candidates in Parasites. PLoS ONE, 2011, 6, e17546.	1.1	49
25	Chimerization at the AQP2–AQP3 locus is the genetic basis of melarsoprol–pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates. International Journal for Parasitology: Drugs and Drug Resistance, 2015, 5, 65-68.	1.4	44
26	Adenosine Kinase Mediates High Affinity Adenosine Salvage in Trypanosoma brucei. Journal of Biological Chemistry, 2008, 283, 5380-5388.	1.6	40
27	Genotypic and phenotypic characterization of Trypanosoma brucei gambiense isolates from Ibba, South Sudan, an area of high melarsoprol treatment failure rate. Acta Tropica, 2007, 104, 84-90.	0.9	39
28	Comparative Genomics Reveals Multiple Genetic Backgrounds of Human Pathogenicity in the Trypanosoma brucei Complex. Genome Biology and Evolution, 2014, 6, 2811-2819.	1.1	39
29	An anti-contamination cocktail for the in vitro isolation and cultivation of parasitic protozoa. Parasitology Research, 2002, 88, 172-174.	0.6	38
30	Differences in Conformational Dynamics between <i>Plasmodium falciparum</i> and Human Hsp90 Orthologues Enable the Structure-Based Discovery of Pathogen-Selective Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 2524-2535.	2.9	38
31	Assessing anti-T.Âcruzi candidates inÂvitro for sterile cidality. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 165-170.	1.4	38
32	Adenosine Kinase of <i>Trypanosoma brucei</i> and Its Role in Susceptibility to Adenosine Antimetabolites. Antimicrobial Agents and Chemotherapy, 2007, 51, 3895-3901.	1.4	37
33	The Diamidine Diminazene Aceturate Is a Substrate for the High-Affinity Pentamidine Transporter: Implications for the Development of High Resistance Levels in Trypanosomes. Molecular Pharmacology, 2011, 80, 110-116.	1.0	37
34	Aquaglyceroporin-null trypanosomes display glycerol transport defects and respiratory-inhibitor sensitivity. PLoS Pathogens, 2017, 13, e1006307.	2.1	37
35	TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Research, 2015, 43, D637-D644.	6.5	35
36	myo-Inositol Uptake Is Essential for Bulk Inositol Phospholipid but Not Glycosylphosphatidylinositol Synthesis in Trypanosoma brucei. Journal of Biological Chemistry, 2012, 287, 13313-13323.	1.6	34

#	Article	IF	CITATIONS
37	Inhibition of <i>Plasmodium falciparum</i> Hsp90 Contributes to the Antimalarial Activities of Aminoalcohol-carbazoles. Journal of Medicinal Chemistry, 2016, 59, 6344-6352.	2.9	34
38	Melarsoprol- and pentamidine-resistant Trypanosoma brucei rhodesiense populations and their cross-resistance. International Journal for Parasitology, 2007, 37, 1443-1448.	1.3	30
39	In silico prediction of antimalarial drug target candidates. International Journal for Parasitology: Drugs and Drug Resistance, 2012, 2, 191-199.	1.4	30
40	Identification and characterization of trypanocides by functional expression of an adenosine transporter from Trypanosoma brucei in yeast. Journal of Molecular Medicine, 2001, 79, 121-127.	1.7	27
41	Monoclonal Antibodies That Recognize the Alkylation Signature of Antimalarial Ozonides OZ277 (Arterolane) and OZ439 (Artefenomel). ACS Infectious Diseases, 2016, 2, 54-61.	1.8	27
42	Trypanosoma brucei adenine-phosphoribosyltransferases mediate adenine salvage and aminopurinol susceptibility but not adenine toxicity. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 55-63.	1.4	26
43	Beyond immune escape: a variant surface glycoprotein causes suramin resistance in <i>Trypanosoma brucei</i> . Molecular Microbiology, 2018, 107, 57-67.	1.2	26
44	Design, Synthesis, and Biological Evaluation of New 1-(Aryl-1 <i>H</i> -pyrrolyl)(phenyl)methyl-1 <i>H</i> -imidazole Derivatives as Antiprotozoal Agents. Journal of Medicinal Chemistry, 2019, 62, 1330-1347.	2.9	26
45	Adenosine Kinase of T. b. rhodesiense Identified as the Putative Target of 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine Using Chemical Proteomics. PLoS Neglected Tropical Diseases, 2009, 3, e506.	1.3	25
46	Arginine and Lysine Transporters Are Essential for Trypanosoma brucei. PLoS ONE, 2017, 12, e0168775.	1.1	24
47	In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate. Malaria Journal, 2017, 16, 45.	0.8	23
48	Stochastic Protein Alkylation by Antimalarial Peroxides. ACS Infectious Diseases, 2019, 5, 2067-2075.	1.8	23
49	Comparative genomics of drug resistance in Trypanosoma brucei rhodesiense. Cellular and Molecular Life Sciences, 2016, 73, 3387-3400.	2.4	22
50	Combined contribution of TbAT1 and TbMRPA to drug resistance in Trypanosoma brucei. Molecular and Biochemical Parasitology, 2006, 150, 364-366.	0.5	21
51	A heteromeric potassium channel involved in the modulation of the plasma membrane potential is essential for the survival of African trypanosomes. FASEB Journal, 2015, 29, 3228-3237.	0.2	21
52	Structure of trypanosome coat protein VSGsur and function in suramin resistance. Nature Microbiology, 2021, 6, 392-400.	5.9	20
53	Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents. European Journal of Medicinal Chemistry, 2018, 156, 53-60.	2.6	19
54	Lignans, Amides, and Saponins from Haplophyllum tuberculatum and Their Antiprotozoal Activity. Molecules, 2020, 25, 2825.	1.7	19

#	Article	IF	CITATIONS
55	A Trk/HKT-Type K ⁺ Transporter from Trypanosoma brucei. Eukaryotic Cell, 2010, 9, 539-546.	3.4	18
56	Cell Penetration, Herbicidal Activity, and <i>inâ€vivo</i> â€Toxicity of Oligoâ€Arginine Derivatives and of Novel Guanidiniumâ€Rich Compounds Derived from the Biopolymer Cyanophycin. Helvetica Chimica Acta, 2018, 101, e1800112.	1.0	17
57	Genotypic Status of the TbAT1/P2 Adenosine Transporter of Trypanosoma brucei gambiense Isolates from Northwestern Uganda following Melarsoprol Withdrawal. PLoS Neglected Tropical Diseases, 2009, 3, e523.	1.3	16
58	<i>Trypanosoma brucei</i> eflornithine transporter AAT6 is a low-affinity low-selective transporter for neutral amino acids. Biochemical Journal, 2014, 463, 9-18.	1.7	16
59	A new approach to chemotherapy: drug-induced differentiation kills African trypanosomes. Scientific Reports, 2016, 6, 22451.	1.6	16
60	Transporters of <i>Trypanosoma brucei</i> —phylogeny, physiology, pharmacology. FEBS Journal, 2018, 285, 1012-1023.	2.2	16
61	An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei. PLoS Pathogens, 2015, 11, e1004875.	2.1	15
62	Species-specific Typing of DNA Based on Palindrome Frequency Patterns. DNA Research, 2011, 18, 117-124.	1.5	14
63	Come, sweet death: targeting glycosomal protein import for antitrypanosomal drug development. Current Opinion in Microbiology, 2018, 46, 116-122.	2.3	14
64	From Magic Bullet to Magic Bomb: Reductive Bioactivation of Antiparasitic Agents. ACS Infectious Diseases, 2021, 7, 2777-2786.	1.8	14
65	Characterization of choline uptake in Trypanosoma brucei procyclic and bloodstream forms. Molecular and Biochemical Parasitology, 2013, 190, 16-22.	0.5	13
66	TbIRK is a signature sequence free potassium channel from Trypanosoma brucei locating to acidocalcisomes. Scientific Reports, 2017, 7, 656.	1.6	13
67	Isothermal microcalorimetry – A quantitative method to monitor Trypanosoma congolense growth and growth inhibition by trypanocidal drugs in real time. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 159-164.	1.4	13
68	Synthesis of new 1-benzyl tetrahydropyridinylidene ammonium salts and their antimicrobial and ant anticellular activities. European Journal of Medicinal Chemistry, 2018, 143, 97-106.	2.6	13
69	Anti-malarial ozonides OZ439 and OZ609 tested at clinically relevant compound exposure parameters in a novel ring-stage survival assay. Malaria Journal, 2019, 18, 427.	0.8	13
70	Structure–Activity Relationship in Pyrazolo[4,3-c]pyridines, First Inhibitors of PEX14–PEX5 Protein–Protein Interaction with Trypanocidal Activity. Journal of Medicinal Chemistry, 2020, 63, 847-879.	2.9	13
71	HPLC-Based Activity Profiling for Antiprotozoal Compounds in Croton gratissimus and Cuscuta hyalina. Frontiers in Pharmacology, 2020, 11, 1246.	1.6	13
72	Expression of a specific variant surface glycoprotein has a major impact on suramin sensitivity and endocytosis in <i>Trypanosoma brucei</i> . FASEB BioAdvances, 2019, 1, 595-608.	1.3	12

#	Article	IF	CITATIONS
73	Mining Sudanese Medicinal Plants for Antiprotozoal Agents. Frontiers in Pharmacology, 2020, 11, 865.	1.6	12
74	Antiprotozoal Activities of Tetrazole-quinolines with Aminopiperidine Linker. Medicinal Chemistry, 2019, 15, 409-416.	0.7	12
75	Multi-insecticide resistant malaria vectors in the field remain susceptible to malathion, despite the presence of Ace1 point mutations. PLoS Genetics, 2022, 18, e1009963.	1.5	12
76	Comparative sphingolipidomics of disease-causing trypanosomatids reveal unique lifecycle- and taxonomy-specific lipid chemistries. Scientific Reports, 2017, 7, 13617.	1.6	11
77	Synthesis and structure-activity relationships for new 6-fluoroquinoline derivatives with antiplasmodial activity. Bioorganic and Medicinal Chemistry, 2019, 27, 2052-2065.	1.4	11
78	Match-making for posaconazole through systems thinking. Trends in Parasitology, 2015, 31, 46-51.	1.5	9
79	Pyridine-4(1 <i>H</i>)-one Alkaloids from <i>Waltheria indica</i> as Antitrypanosomatid Agents. Journal of Natural Products, 2020, 83, 3363-3371.	1.5	9
80	The 3-phosphoinositide–dependent protein kinase 1 is an essential upstream activator of protein kinase A in malaria parasites. PLoS Biology, 2021, 19, e3001483.	2.6	9
81	Synthesis of new 1-benzyl tetrahydropyridin-4-ylidene piperidinium salts and their antiplasmodial and antitrypanosomal activities. Medicinal Chemistry Research, 2019, 28, 742-753.	1.1	8
82	Use of herbal remedies in the management of sleeping sickness in four northern provinces of Angola. Journal of Ethnopharmacology, 2020, 256, 112382.	2.0	8
83	Anti-Trypanosomal Proteasome Inhibitors Cure Hemolymphatic and Meningoencephalic Murine Infection Models of African Trypanosomiasis. Tropical Medicine and Infectious Disease, 2020, 5, 28.	0.9	8
84	Antiprotozoal Structure–Activity Relationships of Synthetic Leucinostatin Derivatives and Elucidation of their Mode of Action. Angewandte Chemie - International Edition, 2021, 60, 15613-15621.	7.2	7
85	Antiprotozoal Nor-Triterpene Alkaloids from Buxus sempervirens L Antibiotics, 2021, 10, 696.	1.5	7
86	New derivatives of quinoline-4-carboxylic acid with antiplasmodial activity. Bioorganic and Medicinal Chemistry, 2017, 25, 2251-2259.	1.4	6
87	New derivatives of 7-chloroquinolin-4-amine with antiprotozoal activity. Bioorganic and Medicinal Chemistry, 2017, 25, 941-948.	1.4	6
88	Preparation of new 1,3-dibenzyl tetrahydropyridinylidene ammonium salts and their antimicrobial and anticiclular activities. European Journal of Medicinal Chemistry, 2021, 210, 112969.	2.6	6
89	Combination With Tomatidine Improves the Potency of Posaconazole Against Trypanosoma cruzi. Frontiers in Cellular and Infection Microbiology, 2021, 11, 617917.	1.8	6
90	Boswellic Acids Show In Vitro Activity against Leishmania donovani. Molecules, 2021, 26, 3651.	1.7	6

#	Article	IF	CITATIONS
91	Non-invasive monitoring of drug action: AÂnew live in vitro assay design for Chagas' disease drug discovery. PLoS Neglected Tropical Diseases, 2020, 14, e0008487.	1.3	5
92	In Silico lonomics Segregates Parasitic from Free-Living Eukaryotes. Genome Biology and Evolution, 2013, 5, 1902-1909.	1.1	4
93	The Alkaloid-Enriched Fraction of Pachysandra terminalis (Buxaceae) Shows Prominent Activity against Trypanosoma brucei rhodesiense. Molecules, 2021, 26, 591.	1.7	4
94	Isolation and Structural Elucidation of Compounds from Pleiocarpa bicarpellata and Their In Vitro Antiprotozoal Activity. Molecules, 2022, 27, 2200.	1.7	4
95	Cherchez l'Electron. Molecular Microbiology, 2017, 106, 183-185.	1.2	3
96	Modifications on tetrahydropyridin-4-ylidene ammonium salts and their antiprotozoal activities. Monatshefte Für Chemie, 2018, 149, 801-812.	0.9	3
97	Salvia officinalis L.: Antitrypanosomal Activity and Active Constituents against Trypanosoma brucei rhodesiense. Molecules, 2021, 26, 3226.	1.7	3
98	Enantiospecific antitrypanosomal in vitro activity of eflornithine. PLoS Neglected Tropical Diseases, 2021, 15, e0009583.	1.3	3
99	8-Amino-6-Methoxyquinoline—Tetrazole Hybrids: Impact of Linkers on Antiplasmodial Activity. Molecules, 2021, 26, 5530.	1.7	3
100	Hygroline derivatives from Schizanthus tricolor and their anti-trypanosomatid and antiplasmodial activities. Phytochemistry, 2021, 192, 112957.	1.4	3
101	Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei. PLoS ONE, 2017, 12, e0188219.	1.1	3
102	Using Yeast Synthetic Lethality To Inform Drug Combination for Malaria. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	2
103	New Acyl Derivatives of 3-Aminofurazanes and Their Antiplasmodial Activities. Pharmaceuticals, 2021, 14, 412.	1.7	2
104	Niclosamide Is Active In Vitro against Mycetoma Pathogens. Molecules, 2021, 26, 4005.	1.7	2
105	New derivatives of 3-azabicyclo[3.2.2]nonanes and their antiprotozoal activities. Monatshefte Für Chemie, 2019, 150, 1959-1972.	0.9	1
106	Identification of Antiprotozoal Compounds from BuxusÂsempervirens L. by PLS-Prediction. Molecules, 2021, 26, 6181.	1.7	1
107	Modifications and hybrids of 1,2,3,4-tetrahydropyridinium salts and their antiprotozoal potencies. Monatshefte Für Chemie, 2021, 152, 1347-1359.	0.9	1
108	Synthesis and Structure-Activity Relationships of New 2-Phenoxybenzamides with Antiplasmodial Activity. Pharmaceuticals, 2021, 14, 1109.	1.7	1

#	Article	IF	CITATIONS
109	Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance. Pharmaceuticals, 2022, 15, 135.	1.7	1
110	Host-Microbe Interactions: Parasitology Vol 46. Current Opinion in Microbiology, 2018, 46, vi-viii.	2.3	0
111	Rücktitelbild: Antiprotozoische Strukturâ€AktivitÃफ़â€Beziehungen von synthetischen Leucinostatinâ€Derivaten und Aufkläung ihres Wirkprinzips (Angew. Chem. 28/2021). Angewandte Chemie, 2021, 133, 15792-15792.	1.6	0
112	Antiprotozoische Strukturâ€AktivitÃඎâ€Beziehungen von synthetischen Leucinostatinâ€Derivaten und Aufkläung ihres Wirkprinzips. Angewandte Chemie, 2021, 133, 15741-15749.	1.6	0
113	Unexpected ring-opening of 2,3-dihydropyridines. Monatshefte Für Chemie, 2021, 152, 1377-1387.	0.9	0
114	Drug Resistance in Trypanosoma brucei. , 2017, , 667-676.		0
115	Use of herbal medicine in the management of trypanosomiasis in Angola. Planta Medica International Open, 2017, 4, .	0.3	0
116	Screening of Selected Sudanese Medicinal Plants for In vitro Activity Against Protozoal Neglected Tropical Diseases. , 2017, 4, .		0
117	Pharmacokinetic profiles reconcile in vitro and in vivo activities of novel trypanocidal compounds. Matters, 0, , .	1.0	0
118	In Vitro Drug Efficacy Testing Against Trypanosoma brucei. Methods in Molecular Biology, 2020, 2116, 781-789.	0.4	0