Matthew Hamer

List of Publications by Citations

Source: https://exaly.com/author-pdf/8675408/matthew-hamer-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17	782	12	2 O
papers	citations	h-index	g-index
20	1,093	13.1	3.74
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
17	Resonantly hybridized excitons in moir uperlattices in van der Waals heterostructures. <i>Nature</i> , 2019 , 567, 81-86	50.4	367
16	Nanometer Resolution Elemental Mapping in Graphene-Based TEM Liquid Cells. <i>Nano Letters</i> , 2018 , 18, 1168-1174	11.5	67
15	High Quality Factor Graphene-Based Two-Dimensional Heterostructure Mechanical Resonator. <i>Nano Letters</i> , 2017 , 17, 5950-5955	11.5	49
14	Indirect to Direct Gap Crossover in Two-Dimensional InSe Revealed by Angle-Resolved Photoemission Spectroscopy. <i>ACS Nano</i> , 2019 , 13, 2136-2142	16.7	40
13	Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures. <i>Nano Letters</i> , 2017 , 17, 5222-5228	11.5	39
12	Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructures. <i>2D Materials</i> , 2018 , 5, 041009	5.9	39
11	Gate-Defined Quantum Confinement in InSe-Based van der Waals Heterostructures. <i>Nano Letters</i> , 2018 , 18, 3950-3955	11.5	33
10	Scalable Patterning of Encapsulated Black Phosphorus. <i>Nano Letters</i> , 2018 , 18, 5373-5381	11.5	30
9	Formation and Healing of Defects in Atomically Thin GaSe and InSe. ACS Nano, 2019, 13, 5112-5123	16.7	23
8	Ultra-thin van der Waals crystals as semiconductor quantum wells. <i>Nature Communications</i> , 2020 , 11, 125	17.4	22
7	Optical second harmonic generation in encapsulated single-layer InSe. AIP Advances, 2018, 8, 105120	1.5	15
6	Niobium diselenide superconducting photodetectors. <i>Applied Physics Letters</i> , 2019 , 114, 251103	3.4	13
5	Raman spectroscopy of GaSe and InSe post-transition metal chalcogenides layers. <i>Faraday Discussions</i> , 2021 , 227, 163-170	3.6	11
4	Enhanced Superconductivity in Few-Layer TaS due to Healing by Oxygenation. <i>Nano Letters</i> , 2020 , 20, 3808-3818	11.5	10
3	Atomic Resolution Imaging of CrBr Using Adhesion-Enhanced Grids. <i>Nano Letters</i> , 2020 , 20, 6582-6589	11.5	8
2	Ghost anti-crossings caused by interlayer umklapp hybridization of bands in 2D heterostructures. 2D Materials, 2021 , 8, 015016	5.9	2
1	Strongly Absorbing Nanoscale Infrared Domains within Strained Bubbles at hBN-Graphene Interfaces. <i>ACS Applied Materials & Domains</i> (12, 57638-57648)	9.5	1