Eduardo Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675314/publications.pdf

Version: 2024-02-01

39 papers 1,130 citations

18 h-index 32 g-index

41 all docs

41 docs citations

41 times ranked

1896 citing authors

#	Article	IF	CITATIONS
1	Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules, 2019, 24, 1056.	1.7	206
2	Impact of plant extracts upon human health: A review. Critical Reviews in Food Science and Nutrition, 2020, 60, 873-886.	5.4	92
3	Health promoting properties of blueberries: a review. Critical Reviews in Food Science and Nutrition, 2020, 60, 181-200.	5.4	76
4	Fermented Foods and Beverages in Human Diet and Their Influence on Gut Microbiota and Health. Fermentation, 2018, 4, 90.	1.4	56
5	Antimicrobial and Antibiofilm Activity of Chitosan on the Oral Pathogen Candida albicans. Pathogens, 2014, 3, 908-919.	1.2	51
6	Study of antimicrobial activity and atomic force microscopy imaging of the action mechanism of cashew tree gum. Carbohydrate Polymers, 2012, 90, 270-274.	5.1	46
7	Aqueous extracts of Vaccinium corymbosum as inhibitors of Staphylococcus aureus. Food Control, 2015, 51, 314-320.	2.8	44
8	Wild Mushroom Extracts as Inhibitors of Bacterial Biofilm Formation. Pathogens, 2014, 3, 667-679.	1.2	43
9	Nutritional characterization of acorn flour (a traditional component of the Mediterranean) Tj ETQq1 1 0.784314	rgBT/Ove	rlogk 10 Tf 5
10	Are olive pomace powders a safe source of bioactives and nutrients?. Journal of the Science of Food and Agriculture, 2021, 101, 1963-1978.	1.7	31
11	The Antimicrobial Action of Chitosan Against the Wine Spoilage Yeast <i>Brettanomyces/Dekkera</i> . Journal of Chitin and Chitosan Science, 2013, 1, 240-245.	0.3	29
12	Influence of abiotic factors on the antimicrobial activity of chitosan. Journal of Dermatology, 2013, 40, 1014-1019.	0.6	28
13	Bioactive extracts from brewer's spent grain. Food and Function, 2020, 11, 8963-8977.	2.1	27
14	A review of chitosan's effect on oral biofilms: Perspectives from the tube to the mouth. Journal of Oral Biosciences, 2017, 59, 205-210.	0.8	23
15	The Health-Promoting Potential of Salix spp. Bark Polar Extracts: Key Insights on Phenolic Composition and In Vitro Bioactivity and Biocompatibility. Antioxidants, 2019, 8, 609.	2.2	22
16	Potential prebiotic effect of fruit and vegetable byproducts flour using in vitro gastrointestinal digestion. Food Research International, 2020, 137, 109354.	2.9	21
17	A quitosana como biomaterial odontol $ ilde{A}^3$ gico: estado da arte. Revista Brasileira De Engenharia Biomedica, 2013, 29, 110-120.	0.3	21
18	Anthocyanin Recovery from Grape by-Products by Combining Ohmic Heating with Food-Grade Solvents: Phenolic Composition, Antioxidant, and Antimicrobial Properties. Molecules, 2021, 26, 3838.	1.7	20

#	Article	IF	Citations
19	Investigation of chitosan's antibacterial activity against vancomycin resistant microorganisms and their biofilms. Carbohydrate Polymers, 2017, 174, 369-376.	5.1	19
20	Characterization of Edible Films Based on Alginate or Whey Protein Incorporated with Bifidobacterium animalis subsp. lactis BB-12 and Prebiotics. Coatings, 2019, 9, 493.	1.2	19
21	Study of viability of high pressure extract from pomegranate peel to improve carrot juice characteristics. Food and Function, 2020, 11, 3410-3419.	2.1	18
22	DNA agarose gel electrophoresis for antioxidant analysis: Development of a quantitative approach for phenolic extracts. Food Chemistry, 2017, 233, 45-51.	4.2	17
23	Textile dyes loaded chitosan nanoparticles: Characterization, biocompatibility and staining capacity. Carbohydrate Polymers, 2021, 251, 117120.	5.1	17
24	Effect of High Hydrostatic Pressure Extraction on Biological Activities and Phenolics Composition of Winter Savory Leaf Extracts. Antioxidants, 2020, 9, 841.	2.2	16
25	Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties. Biofouling, 2016, 32, 853-860.	0.8	15
26	Exploring the bioactive potential of brewers spent grain ohmic extracts. Innovative Food Science and Emerging Technologies, 2022, 76, 102943.	2.7	15
27	Production of a food grade blueberry extract rich in anthocyanins: selection of solvents, extraction conditions and purification method. Journal of Food Measurement and Characterization, 2017, 11, 1248-1253.	1.6	14
28	Variation of anthocyanins and other major phenolic compounds throughout the ripening of four Portuguese blueberry (<i>Vaccinium corymbosum</i> L) cultivars. Natural Product Research, 2017, 31, 93-98.	1.0	14
29	Exploring chitosan nanoparticles as effective inhibitors of antibiotic resistant skin microorganisms – From in vitro to ex vitro testing. Carbohydrate Polymers, 2018, 201, 340-346.	5.1	14
30	Nanoencapsulation of Polyphenols towards Dairy Beverage Incorporation. Beverages, 2018, 4, 61.	1.3	13
31	Effect of high hydrostatic pressure extraction on biological activities of stinging nettle extracts. Food and Function, 2020, 11, 921-931.	2.1	12
32	Chitosan's biological activity upon skin-related microorganisms and its potential textile applications. World Journal of Microbiology and Biotechnology, 2018, 34, 93.	1.7	11
33	Characterization and Evaluation of Commercial Carboxymethyl Cellulose Potential as an Active Ingredient for Cosmetics. Applied Sciences (Switzerland), 2022, 12, 6560.	1.3	11
34	Quercus based coffee-like beverage: effect of roasting process and functional characterization. Journal of Food Measurement and Characterization, 2018, 12, 471-479.	1.6	10
35	Novel Micro- and Nanocellulose-Based Delivery Systems for Liposoluble Compounds. Nanomaterials, 2021, 11, 2593.	1.9	8
36	Development of Oral Strips Containing Chitosan as Active Ingredient: A Product for Buccal Health. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 906-918.	1.8	7

#	Article	IF	CITATIONS
37	Chitosan impregnated gutta-percha points: antimicrobial (i>in vitro (/i>evaluation and mechanical properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 481-488.	1.8	4
38	Engineering and Health Benefits of Fruits and Vegetables Beverages., 2019,, 363-405.		3
39	Antioxidant-loaded nanocarriers for drinks. , 2020, , 337-372.		1