
Waseem Aftab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoconfined phase change materials for thermal energy applications. Energy and Environmental Science, 2018, 11, 1392-1424.	30.8	445
2	Ultrafast Sodium/Potassiumâ€ion Intercalation into Hierarchically Porous Thin Carbon Shells. Advanced Materials, 2019, 31, e1805430.	21.0	214
3	Engineering the Thermal Conductivity of Functional Phase hange Materials for Heat Energy Conversion, Storage, and Utilization. Advanced Functional Materials, 2020, 30, 1904228.	14.9	202
4	Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy and Environmental Science, 2021, 14, 4268-4291.	30.8	193
5	Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Materials, 2019, 20, 401-409.	18.0	192
6	Encapsulating Trogtalite CoSe ₂ Nanobuds into BCN Nanotubes as High Storage Capacity Sodium Ion Battery Anodes. Advanced Energy Materials, 2019, 9, 1901778.	19.5	131
7	Synergistic Effect of Co–Ni Hybrid Phosphide Nanocages for Ultrahigh Capacity Fast Energy Storage. Advanced Science, 2019, 6, 1802005.	11.2	130
8	Flexible phase change materials for thermal energy storage. Energy Storage Materials, 2021, 41, 321-342.	18.0	128
9	Tuning the flexibility and thermal storage capacity of solid–solid phase change materials towards wearable applications. Journal of Materials Chemistry A, 2020, 8, 20133-20140.	10.3	119
10	Fe ₂ N/S/N Codecorated Hierarchical Porous Carbon Nanosheets for Trifunctional Electrocatalysis. Small, 2018, 14, e1803500.	10.0	80
11	Tunable Free-Standing Core–Shell CNT@MoSe ₂ Anode for Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 14622-14631.	8.0	78
12	Highly efficient solar-thermal storage coating based on phosphorene encapsulated phase change materials. Energy Storage Materials, 2020, 32, 199-207.	18.0	77
13	Large-scale fabrication of BCN nanotube architecture entangled on a three-dimensional carbon skeleton for energy storage. Journal of Materials Chemistry A, 2018, 6, 21225-21230.	10.3	62
14	Emerging Solidâ€ŧo‣olid Phaseâ€Change Materials for Thermalâ€Energy Harvesting, Storage, and Utilization. Advanced Materials, 2022, 34, .	21.0	59
15	Surface modified boron nitride towards enhanced thermal and mechanical performance of thermoplastic polyurethane composite. Composites Part B: Engineering, 2021, 218, 108871.	12.0	53
16	Copper Sulfide Nanodisk-Doped Solid–Solid Phase Change Materials for Full Spectrum Solar-Thermal Energy Harvesting and Storage. ACS Applied Materials & Interfaces, 2021, 13, 1377-1385.	8.0	46
17	Facile preparation of flexible eicosane/SWCNTs phase change films via colloid aggregation for thermal energy storage. Applied Energy, 2020, 260, 114320.	10.1	32
18	Carbon Fibers Embedded With Iron Selenide (Fe3Se4) as Anode for High-Performance Sodium and Potassium Ion Batteries. Frontiers in Chemistry, 2020, 8, 408.	3.6	30

WASEEM AFTAB

#	Article	IF	CITATIONS
19	Engineering of polymer-based materials for thermal management solutions. Composites Communications, 2022, 29, 101048.	6.3	29
20	Synthesis and characterization of chitin/curcumin blended polyurethane elastomers. International Journal of Biological Macromolecules, 2018, 113, 150-158.	7.5	24
21	Visualization of battery materials and their interfaces/interphases using cryogenic electron microscopy. Materials Today, 2022, 58, 238-274.	14.2	17
22	Phase-change materials reinforced intelligent paint for efficient daytime radiative cooling. IScience, 2022, 25, 104584.	4.1	16
23	Synthesis and characterization of graphene nanoplatelets-hydroxyethyl cellulose copolymer-based polyurethane bionanocomposite system. International Journal of Biological Macromolecules, 2020, 165, 1889-1899.	7.5	15
24	Preparation and characterization of guar gum based polyurethanes. International Journal of Biological Macromolecules, 2021, 183, 2174-2183.	7.5	15
25	Hydroxyethylcellulose-g-poly(lactic acid) blended polyurethanes: Preparation, characterization and biological studies. International Journal of Biological Macromolecules, 2020, 151, 993-1003.	7.5	14
26	Structural elucidation and biological aptitude of modified hydroxyethylcellulose-polydimethyl siloxane based polyurethanes. International Journal of Biological Macromolecules, 2020, 150, 426-440.	7.5	13
27	A BN analog of two-dimensional triphenylene-graphdiyne: stability and properties. Nanoscale, 2019, 11, 9000-9007.	5.6	12
28	Synthesis and molecular characterization of chitosan/alginate blends based polyurethanes biocomposites. International Journal of Biological Macromolecules, 2021, 180, 324-331.	7.5	9
29	Role of binary metal chalcogenides in extending the limits of energy storage systems: Challenges and possible solutions. Science China Materials, 2022, 65, 559-592.	6.3	8
30	The Application of Carbon Materials in Latent Heat Thermal Energy Storage (LHTES). , 2017, , 243-265.		7
31	Synthesis and characterization of hydroxyethyl cellulose copolymer modified polyurethane bionanocomposites. International Journal of Biological Macromolecules, 2021, 179, 345-352.	7.5	7
32	Microwaves heating strategy to synthesize few layer graphene for polymer composites towards thermal and electrical applications. Composites Science and Technology, 2020, 200, 108402.	7.8	5