
## Andrew M Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675255/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Flexibility in a Metal–Organic Framework Material Controlled by Weak Dispersion Forces: The<br>Bistability of MILâ€53(Al). Angewandte Chemie - International Edition, 2010, 49, 7501-7503. | 13.8 | 158       |
| 2  | MSAT—A new toolkit for the analysis of elastic and seismic anisotropy. Computers and Geosciences, 2012, 49, 81-90.                                                                         | 4.2  | 128       |
| 3  | Titanium substitution mechanisms in forsterite. Chemical Geology, 2007, 242, 176-186.                                                                                                      | 3.3  | 83        |
| 4  | Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism.<br>Journal of Geophysical Research, 2007, 112, .                                      | 3.3  | 74        |
| 5  | Ti site occupancy in zircon. Geochimica Et Cosmochimica Acta, 2011, 75, 905-921.                                                                                                           | 3.9  | 72        |
| 6  | An ångström-sized window on the origin of water in the inner solar system: Atomistic simulation of<br>adsorption of water on olivine. Journal of Crystal Growth, 2006, 294, 83-95.         | 1.5  | 63        |
| 7  | A computational study of oxygen diffusion in olivine. Physics and Chemistry of Minerals, 2003, 30, 536-545.                                                                                | 0.8  | 58        |
| 8  | Predicting the structure of screw dislocations in nanoporous materials. Nature Materials, 2004, 3, 715-720.                                                                                | 27.5 | 56        |
| 9  | Elastic anisotropy of D″ predicted from global models of mantle flow. Geochemistry, Geophysics,<br>Geosystems, 2011, 12, n/a-n/a.                                                          | 2.5  | 56        |
| 10 | Variation of thermal conductivity and heat flux at the Earth's core mantle boundary. Earth and<br>Planetary Science Letters, 2014, 390, 175-185.                                           | 4.4  | 48        |
| 11 | Computer modelling of the energies and vibrational properties of hydroxyl groups in - and -Mg2SiO4.<br>European Journal of Mineralogy, 2006, 18, 529-543.                                  | 1.3  | 44        |
| 12 | Defects and dislocations in MgO: atomic scale models of impurity segregation and fast pipe diffusion.<br>Journal of Materials Chemistry, 2010, 20, 10445.                                  | 6.7  | 40        |
| 13 | Strong inheritance of texture between perovskite and post-perovskite in the D′′ layer. Nature<br>Geoscience, 2013, 6, 575-578.                                                             | 12.9 | 40        |
| 14 | Atomic scale modelling of the cores of dislocations in complex materials part 2: applications. Physical Chemistry Chemical Physics, 2005, 7, 3235.                                         | 2.8  | 39        |
| 15 | A computational study of magnesium point defects and diffusion in forsterite. Physics of the Earth and Planetary Interiors, 2009, 172, 20-27.                                              | 1.9  | 39        |
| 16 | The NiSi melting curve to 70GPa. Physics of the Earth and Planetary Interiors, 2014, 233, 13-23.                                                                                           | 1.9  | 36        |
| 17 | Development of texture and seismic anisotropy during the onset of subduction. Geochemistry,<br>Geophysics, Geosystems, 2014, 15, 192-212.                                                  | 2.5  | 36        |
| 18 | Substitution of Ti3+ and Ti4+ in hibonite (CaAl12O19). American Mineralogist, 2014, 99, 1369-1382.                                                                                         | 1.9  | 35        |

ANDREW M WALKER

| #  | Article                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | On the increase in thermal diffusivity caused by the perovskite to post-perovskite phase transition and its implications for mantle dynamics. Earth and Planetary Science Letters, 2012, 319-320, 96-103.                                                                                                        | 4.4 | 33        |
| 20 | Evaluating post-perovskite as a cause of D′′ anisotropy in regions of palaeosubduction. Geophysical<br>Journal International, 2013, 192, 1085-1090.                                                                                                                                                              | 2.4 | 31        |
| 21 | The effect of pressure on the elastic properties and seismic anisotropy of diopside and jadeite from atomic scale simulation. Physics of the Earth and Planetary Interiors, 2012, 192-193, 81-89.                                                                                                                | 1.9 | 28        |
| 22 | Atomic scale modelling of the cores of dislocations in complex materials part 1: methodology.<br>Physical Chemistry Chemical Physics, 2005, 7, 3227.                                                                                                                                                             | 2.8 | 26        |
| 23 | Atomic-scale models of dislocation cores in minerals: progress and prospects. Mineralogical Magazine, 2010, 74, 381-413.                                                                                                                                                                                         | 1.4 | 26        |
| 24 | Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone. Scientific<br>Reports, 2016, 6, 29981.                                                                                                                                                                                     | 3.3 | 24        |
| 25 | The origin of the compressibility anomaly in amorphous silica: a molecular dynamics study. Journal of<br>Physics Condensed Matter, 2007, 19, 275210.                                                                                                                                                             | 1.8 | 22        |
| 26 | The compressibility and high pressure structure of diopside from first principles simulation. Physics and Chemistry of Minerals, 2008, 35, 359-366.                                                                                                                                                              | 0.8 | 22        |
| 27 | Evidence from numerical modelling for 3D spreading of [001] screw dislocations in<br>Mg <sub>2</sub> SiO <sub>4</sub> forsterite. Philosophical Magazine, 2008, 88, 2477-2485.                                                                                                                                   | 1.6 | 22        |
| 28 | Bulk and Surface Simulation Studies of La1-xCaxMnO3. Chemistry of Materials, 2006, 18, 1552-1560.                                                                                                                                                                                                                | 6.7 | 21        |
| 29 | Melt organisation and strain partitioning in the lower crust. Journal of Structural Geology, 2018, 113, 188-199.                                                                                                                                                                                                 | 2.3 | 21        |
| 30 | A computational study of order-disorder phenomena in Mg2TiO4 spinel (qandilite). American<br>Mineralogist, 2008, 93, 1363-1372.                                                                                                                                                                                  | 1.9 | 16        |
| 31 | Comment upon the screw dislocation structure on HKUST-1 {111} surfaces. CrystEngComm, 2008, 10, 790.                                                                                                                                                                                                             | 2.6 | 16        |
| 32 | From data to analysis: linking NWChem and Avogadro with the syntax and semantics of Chemical<br>Markup Language. Journal of Cheminformatics, 2013, 5, 25.                                                                                                                                                        | 6.1 | 16        |
| 33 | Thermoelastic properties of magnesiowüstite, (Mg <sub>1â^'<i>x</i></sub> Fe <sub><i>x</i></sub> )O:<br>determination of the Anderson–Grüneisen parameter by time-of-flight neutron powder diffraction at<br>simultaneous high pressures and temperatures. Journal of Applied Crystallography, 2008, 41, 886-896. | 4.5 | 15        |
| 34 | Integrating computing, data and collaboration grids: the RMCS tool. Philosophical Transactions<br>Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1047-1050.                                                                                                                              | 3.4 | 14        |
| 35 | Thermal diffusivity of MORB-composition rocks to 15ÂGPa: implications for triggering of deep seismicity. High Pressure Research, 2010, 30, 406-414.                                                                                                                                                              | 1.2 | 14        |
| 36 | Peierls-Nabarro modeling of dislocations in UO 2. Journal of Nuclear Materials, 2017, 495, 202-210.                                                                                                                                                                                                              | 2.7 | 12        |

ANDREW M WALKER

| #  | Article                                                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Evolution of a shear zone before, during and after melting. Journal of the Geological Society, 2020, 177, 738-751.                                                                                                                                                                                                                                 | 2.1 | 12        |
| 38 | The effect of pressure on thermal diffusivity in pyroxenes. Mineralogical Magazine, 2011, 75, 2597-2610.                                                                                                                                                                                                                                           | 1.4 | 11        |
| 39 | The limitations of hibonite as a single-mineral oxybarometer for early solar system processes.<br>Chemical Geology, 2017, 466, 32-40.                                                                                                                                                                                                              | 3.3 | 11        |
| 40 | The anisotropic signal of topotaxy during phase transitions in <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si23.gif"<br/>overflow="scroll"&gt;<mml:mrow><mml:mrow><mml:mtext>D</mml:mtext></mml:mrow><mml:mrow<br>Physics of the Earth and Planetary Interiors, 2018, 276, 159-171.</mml:mrow<br></mml:mrow></mml:math<br> |     | mo≯a€³    |
| 41 | Job submission to grid computing environments. Concurrency Computation Practice and Experience, 2008, 20, 1329-1340.                                                                                                                                                                                                                               | 2.2 | 10        |
| 42 | Molecular dynamics in a grid computing environment: experiences using DL_POLY_3 within theeMinerals escience project. Molecular Simulation, 2006, 32, 945-952.                                                                                                                                                                                     | 2.0 | 9         |
| 43 | Lessons in scientific data interoperability: XML and the <i>e</i> Minerals project. Philosophical<br>Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 1041-1046.                                                                                                                                                | 3.4 | 9         |
| 44 | Simulation of screw dislocations in wadsleyite. Physics and Chemistry of Minerals, 2010, 37, 301-310.                                                                                                                                                                                                                                              | 0.8 | 9         |
| 45 | The effect of cation order on the elasticity of omphacite from atomistic calculations. Physics and Chemistry of Minerals, 2015, 42, 677-691.                                                                                                                                                                                                       | 0.8 | 9         |
| 46 | Modeling the impact of melt on seismic properties during mountain building. Geochemistry,<br>Geophysics, Geosystems, 2017, 18, 1090-1110.                                                                                                                                                                                                          | 2.5 | 9         |
| 47 | Explaining the dependence of M-site diffusion in forsterite on silica activity: a density functional theory approach. Physics and Chemistry of Minerals, 2020, 47, 55.                                                                                                                                                                             | 0.8 | 9         |
| 48 | eScience for molecular-scale simulations and the <i>e</i> Minerals project. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367, 967-985.                                                                                                                                                             | 3.4 | 8         |
| 49 | The phase diagram of NiSi under the conditions of small planetary interiors. Physics of the Earth and Planetary Interiors, 2016, 261, 196-206.                                                                                                                                                                                                     | 1.9 | 8         |
| 50 | In-situ measurement of texture development rate in CalrO3 post-perovskite. Physics of the Earth and Planetary Interiors, 2016, 257, 91-104.                                                                                                                                                                                                        | 1.9 | 8         |
| 51 | New software for finding transition states by probing accessible, or ergodic, regions. Molecular Simulation, 2007, 33, 1229-1231.                                                                                                                                                                                                                  | 2.0 | 7         |
| 52 | Controls on the distribution of hydrous defects in forsterite from a thermodynamic model. Physics and Chemistry of Minerals, 2022, 49, 1.                                                                                                                                                                                                          | 0.8 | 6         |
| 53 | The mechanism of Mg diffusion in forsterite and the controls on its anisotropy. Physics of the Earth and Planetary Interiors, 2021, 321, 106805.                                                                                                                                                                                                   | 1.9 | 5         |
| 54 | Analytical parametrization of self-consistent polycrystal mechanics: Fast calculation of upper mantle anisotropy. Geophysical Journal International, 2015, 203, 334-350.                                                                                                                                                                           | 2.4 | 4         |

ANDREW M WALKER

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Ab initio crystal structure and elasticity of tuite, γ-Ca3(PO4)2, with implications for trace element partitioning in the lower mantle. Contributions To Mineralogy and Petrology, 2017, 172, 1. | 3.1  | 4         |
| 56 | Probing the nucleation of iron in Earth's core using molecular dynamics simulations of supercooled liquids. Physical Review B, 2021, 103, .                                                      | 3.2  | 4         |
| 57 | The Ti environment in natural hibonite: XANES spectroscopy and computer modelling. Journal of Physics: Conference Series, 2016, 712, 012089.                                                     | 0.4  | 3         |
| 58 | Lubrication of dislocation glide in MgO by hydrous defects. Physics and Chemistry of Minerals, 2018, 45, 713-726.                                                                                | 0.8  | 3         |
| 59 | Lubrication of dislocation glide in forsterite by Mg vacancies: Insights from Peierls-Nabarro modeling. Physics of the Earth and Planetary Interiors, 2019, 287, 1-9.                            | 1.9  | 3         |
| 60 | Integrating Data Management and Collaborative Sharing with Computational Science Research Processes. Advances in Computer and Electrical Engineering Book Series, 2012, , 506-538.               | 0.3  | 3         |
| 61 | Interactions between bare and protonated Mg vacancies and dislocation cores in MgO. Physics and Chemistry of Minerals, 2019, 46, 471-485.                                                        | 0.8  | 2         |
| 62 | The Conductive Cooling of Planetesimals With Temperatureâ€Dependent Properties. Journal of<br>Geophysical Research E: Planets, 2021, 126, e2020JE006726.                                         | 3.6  | 2         |
| 63 | Information Delivery in Computational Mineral Science: The eMinerals Data Handling System. , 2006, , .                                                                                           |      | 1         |
| 64 | Thermoelastic properties of MgSiO3-majorite at high temperatures and pressures: A first principles study. Physics of the Earth and Planetary Interiors, 2020, 303, 106491.                       | 1.9  | 1         |
| 65 | Large Scale Atomistic Simulation with Electrostatics: The Case of Cation Impurity Segregation Along an Edge Dislocation Line. , 2010, , .                                                        |      | 0         |
| 66 | Limits of the power law. Nature, 2012, 481, 153-154.                                                                                                                                             | 27.8 | 0         |