List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675229/publications.pdf Version: 2024-02-01

SARATA DIEDNO

#	Article	IF	CITATIONS
1	Enhanced Dystrophic Progression in mdx Mice by Exercise and Beneficial Effects of Taurine and Insulin-Like Growth Factor-1. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 453-463.	2.5	179
2	Taurine: the appeal of a safe amino acid for skeletal muscle disorders. Journal of Translational Medicine, 2015, 13, 243.	4.4	163
3	Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Frontiers in Pharmacology, 2016, 7, 121.	3.5	121
4	Redox homeostasis, oxidative stress and disuse muscle atrophy. Journal of Physiology, 2011, 589, 2147-2160.	2.9	116
5	A Multidisciplinary Evaluation of the Effectiveness of Cyclosporine A in Dystrophic Mdx Mice. American Journal of Pathology, 2005, 166, 477-489.	3.8	107
6	ls oxidative stress a cause or consequence of disuse muscle atrophy in mice? A proteomic approach in hindlimbâ€unloaded mice. Experimental Physiology, 2010, 95, 331-350.	2.0	87
7	Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile. Neurobiology of Disease, 2005, 18, 356-365.	4.4	76
8	Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacological Research, 2010, 61, 553-563.	7.1	74
9	Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Brain, 2002, 125, 1510-1521.	7.6	73
10	The alteration of calcium homeostasis in adult dystrophic mdx muscle fibers is worsened by a chronic exercise in vivo. Neurobiology of Disease, 2004, 17, 144-154.	4.4	70
11	Decrease in resting calcium and calcium entry associated with slowâ€ŧoâ€fast transition in unloaded rat soleus muscle. FASEB Journal, 2003, 17, 1-25.	0.5	69
12	Taurine and Skeletal Muscle Disorders. Neurochemical Research, 2004, 29, 135-142.	3.3	67
13	Fluvastatin and Atorvastatin Affect Calcium Homeostasis of Rat Skeletal Muscle Fibers in Vivo and in Vitro by Impairing the Sarcoplasmic Reticulum/Mitochondria Ca ²⁺ -Release System. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 626-634.	2.5	67
14	Pharmacological Characterization of Chloride Channels Belonging to the ClC Family by the Use of Chiral Clofibric Acid Derivatives. Molecular Pharmacology, 2000, 58, 498-507.	2.3	62
15	Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatinâ€induced cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2017, 8, 386-404.	7.3	58
16	Disuse of rat muscle <i>in vivo</i> reduces protein kinase C activity controlling the sarcolemma chloride conductance. Journal of Physiology, 2007, 584, 983-995.	2.9	55
17	Effect of taurine depletion on excitation-contraction coupling and C1â^' conductance of rat skeletal muscle. European Journal of Pharmacology, 1996, 296, 215-222.	3.5	52
18	Molecular Requisites for Drug Binding to Muscle CLC-1 and Renal CLC-K Channel Revealed by the Use of Phenoxy-Alkyl Derivatives of 2-(p-Chlorophenoxy)Propionic Acid. Molecular Pharmacology, 2002, 62, 265-271.	2.3	51

#	Article	IF	CITATIONS
19	Alteration of excitation-contraction coupling mechanism in extensor digitorum longus muscle fibres of dystrophic mdx mouse and potential efficacy of taurine. British Journal of Pharmacology, 2001, 132, 1047-1054.	5.4	48
20	Investigations of Pharmacologic Properties of the Renal CLC-K1 Chloride Channel Co-expressed with Barttin by the Use of 2-(p-Chlorophenoxy)Propionic Acid Derivatives and Other Structurally Unrelated Chloride Channels Blockers. Journal of the American Society of Nephrology: JASN, 2004, 15, 13-20.	6.1	48
21	Fiber type-related changes in rat skeletal muscle calcium homeostasis during aging and restoration by growth hormone. Neurobiology of Disease, 2006, 21, 372-380.	4.4	47
22	Therapeutic Approaches to Ion Channel Diseases. Advances in Genetics, 2008, 64, 81-145.	1.8	47
23	Muscle loading modulates aquaporinâ€4 expression in skeletal muscle. FASEB Journal, 2001, 15, 1282-1284.	0.5	45
24	Cardiovascular, neurological, and pulmonary events following vaccination with the BNT162b2, ChAdOx1 nCoV-19, and Ad26.COV2.S vaccines: An analysis of European data. Journal of Autoimmunity, 2021, 125, 102742.	6.5	42
25	Growth hormone secretagogues modulate the electrical and contractile properties of rat skeletal muscle through a ghrelin-specific receptor. British Journal of Pharmacology, 2003, 139, 575-584.	5.4	40
26	Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease modifier in dystrophinâ€deficient <i>mdx</i> mice: proofâ€ofâ€concept study and independent validation of efficacy. FASEB Journal, 2018, 32, 1025-1043.	0.5	40
27	New 2-Aryloxy-3-phenyl-propanoic Acids As Peroxisome Proliferator-Activated Receptors α/γ Dual Agonists with Improved Potency and Reduced Adverse Effects on Skeletal Muscle Function. Journal of Medicinal Chemistry, 2009, 52, 6382-6393.	6.4	39
28	Different Ability of Clenbuterol and Salbutamol to Block Sodium Channels Predicts Their Therapeutic Use in Muscle Excitability Disorders. Molecular Pharmacology, 2003, 63, 659-670.	2.3	37
29	Aging-associated down-regulation of CIC-1 expression in skeletal muscle: phenotypic-independent relation to the decrease of chloride conductance. FEBS Letters, 1999, 449, 12-16.	2.8	36
30	An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function. Age, 2014, 36, 73-88.	3.0	36
31	The Biophysical and Pharmacological Characteristics of Skeletal Muscle ATP-Sensitive K ⁺ Channels Are Modified in K ⁺ -Depleted Rat, an Animal Model of Hypokalemic Periodic Paralysis. Molecular Pharmacology, 1998, 54, 197-206.	2.3	34
32	Potential benefits of taurine in the prevention of skeletal muscle impairment induced by disuse in the hindlimb-unloaded rat. Amino Acids, 2012, 43, 431-445.	2.7	33
33	A long-term treatment with taurine prevents cardiac dysfunction in mdx mice. Translational Research, 2019, 204, 82-99.	5.0	32
34	Angiotensin II modulates mouse skeletal muscle resting conductance to chloride and potassium ions and calcium homeostasis via the AT ₁ receptor and NADPH oxidase. American Journal of Physiology - Cell Physiology, 2014, 307, C634-C647.	4.6	30
35	Phosphorylation and IGF-1-mediated dephosphorylation pathways control the activity and the pharmacological properties of skeletal muscle chloride channels. British Journal of Pharmacology, 1998, 125, 477-482.	5.4	29
36	Increased sodium channel use-dependent inhibition by a new potent analogue of tocainide greatly enhances inÂvivo antimyotonic activity. Neuropharmacology, 2017, 113, 206-216.	4.1	29

#	Article	IF	CITATIONS
37	Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options. Scientific Reports, 2019, 9, 3185.	3.3	29
38	Higher content of insulin-like growth factor-I in dystrophic mdx mouse: potential role in the spontaneous regeneration through an electrophysiological investigation of muscle function. Neuromuscular Disorders, 1999, 9, 11-18.	0.6	28
39	Statin or fibrate chronic treatment modifies the proteomic profile of rat skeletal muscle. Biochemical Pharmacology, 2011, 81, 1054-1064.	4.4	28
40	Protein kinase C theta (PKCÎ) modulates the ClC-1 chloride channel activity and skeletal muscle phenotype: a biophysical and gene expression study in mouse models lacking the PKCÎ, Pflugers Archiv European Journal of Physiology, 2014, 466, 2215-2228.	2.8	28
41	New potent mexiletine and tocainide analogues evaluated in vivo and in vitro as antimyotonic agents on the myotonic ADR mouse. Neuromuscular Disorders, 2004, 14, 405-416.	0.6	27
42	Effects of HMG-CoA reductase inhibitors on excitation–contraction coupling of rat skeletal muscle. European Journal of Pharmacology, 1999, 364, 43-48.	3.5	26
43	Paracrine Effects of IGF-1 Overexpression on the Functional Decline Due to Skeletal Muscle Disuse: Molecular and Functional Evaluation in Hindlimb Unloaded MLC/mIgf-1 Transgenic Mice. PLoS ONE, 2013, 8, e65167.	2.5	24
44	Effects of Pleiotrophin Overexpression on Mouse Skeletal Muscles in Normal Loading and in Actual and Simulated Microgravity. PLoS ONE, 2013, 8, e72028.	2.5	24
45	On the Metabolically Active Form of Metaglidasen: Improved Synthesis and Investigation of Its Peculiar Activity on Peroxisome Proliferatorâ€Activated Receptors and Skeletal Muscles. ChemMedChem, 2015, 10, 555-565.	3.2	23
46	Structural requisites of 2-(p -chlorophenoxy)propionic acid analogues for activity on native rat skeletal muscle chloride conductance and on heterologously expressed CLC-1. British Journal of Pharmacology, 2003, 139, 1255-1264.	5.4	22
47	Risk of Myopathy in Patients in Therapy with Statins: Identification of Biological Markers in a Pilot Study. Frontiers in Pharmacology, 2017, 8, 500.	3.5	22
48	Statin-induced myotoxicity is exacerbated by aging: A biophysical and molecular biology study in rats treated with atorvastatin. Toxicology and Applied Pharmacology, 2016, 306, 36-46.	2.8	21
49	Pre-clinical trials in Duchenne dystrophy: what animal models can tell us about potential drug effectiveness. Neuromuscular Disorders, 2002, 12, S142-S146.	0.6	19
50	Effects of Nandrolone in the Counteraction of Skeletal Muscle Atrophy in a Mouse Model of Muscle Disuse: Molecular Biology and Functional Evaluation. PLoS ONE, 2015, 10, e0129686.	2.5	19
51	Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence. International Journal of Molecular Sciences, 2021, 22, 2070.	4.1	17
52	Effects of chronic growth hormone treatment in aged rats on the biophysical and pharmacological properties of skeletal muscle chloride channels. British Journal of Pharmacology, 1997, 121, 369-374.	5.4	16
53	Safinamide's potential in treating nondystrophic myotonias: Inhibition of skeletal muscle voltage-gated sodium channels and skeletal muscle hyperexcitability in vitro and in vivo. Experimental Neurology, 2020, 328, 113287.	4.1	15
54	Experimental Evaluation of the Effects of Pravastatin on Electrophysiological Parameters of Rat Skeletal Muscle. Basic and Clinical Pharmacology and Toxicology, 1992, 71, 325-329.	0.0	14

#	Article	IF	CITATIONS
55	Taurine and Skeletal Muscle Ion Channels. Advances in Experimental Medicine and Biology, 2002, 483, 45-56.	1.6	13
56	Dual Action of Mexiletine and Its Pyrroline Derivatives as Skeletal Muscle Sodium Channel Blockers and Anti-oxidant Compounds: Toward Novel Therapeutic Potential. Frontiers in Pharmacology, 2017, 8, 907.	3.5	12
57	BCAAs and Di-Alanine supplementation in the prevention of skeletal muscle atrophy: preclinical evaluation in a murine model of hind limb unloading. Pharmacological Research, 2021, 171, 105798.	7.1	12
58	Changes of membrane electrical properties in extensor digitorum longus muscle from dystrophic (mdx) mice. Muscle and Nerve, 1995, 18, 1196-1198.	2.2	10
59	Growth Hormone Secretagogues Exert Differential Effects on Skeletal Muscle Calcium Homeostasis in Male Rats Depending on the Peptidyl/Nonpeptidyl Structure. Endocrinology, 2013, 154, 3764-3775.	2.8	10
60	Effect of Taurine on Excitation-Contraction Coupling of Extensor Digitorum Longus Muscle of Dystrophic MDX Mouse. Advances in Experimental Medicine and Biology, 1998, 442, 115-119.	1.6	8
61	Dual Effects of Taurine on Membrane Ionic Conductances of Rat Skeletal Muscle Fibers. Advances in Experimental Medicine and Biology, 1994, 359, 217-224.	1.6	8
62	Therapeutic Targets in Amyotrophic Lateral Sclerosis: Focus on Ion Channels and Skeletal Muscle. Cells, 2022, 11, 415.	4.1	8
63	Developmental changes of membrane electrical properties of rat skeletal muscle fibers produced by prenatal exposure to carbon monoxide. Environmental Toxicology and Pharmacology, 1996, 2, 213-221.	4.0	4
64	Changes in Expression and Cellular Localization of Rat Skeletal Muscle ClC-1 Chloride Channel in Relation to Age, Myofiber Phenotype and PKC Modulation. Frontiers in Pharmacology, 2020, 11, 714.	3.5	4
65	Increased sarcolemma chloride conductance as one of the mechanisms of action of carbonic anhydrase inhibitors in muscle excitability disorders. Experimental Neurology, 2021, 342, 113758.	4.1	4
66	Calcium Homeostasis Is Altered in Skeletal Muscle of Spontaneously Hypertensive Rats. American Journal of Pathology, 2014, 184, 2803-2815.	3.8	1