Ana D PopovićBijelić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675217/publications.pdf

Version: 2024-02-01

47 papers

922 citations

17 h-index 29 g-index

47 all docs

47 docs citations

47 times ranked

1743 citing authors

#	Article	IF	Citations
1	Analysis of Fixed-Dose Combination of Three Antihypertensive Drugs by a Green and Quality by Design Approach. Journal of Chromatographic Science, 2023, 61, 256-268.	0.7	O
2	The Release of a Highly Cytotoxic Paullone Bearing a TEMPO Free Radical from the HSA Hydrogel: An EPR Spectroscopic Characterization. Pharmaceutics, 2022, 14, 1174.	2.0	2
3	In Vivo/Ex Vivo EPR Investigation of the Brain Redox Status and Blood-Brain Barrier Integrity in the 5xFAD Mouse Model of Alzheimer's Disease. Current Alzheimer Research, 2021, 18, 25-34.	0.7	3
4	Coumarin-Based Triapine Derivatives and Their Copper(II) Complexes: Synthesis, Cytotoxicity and mR2 RNR Inhibition Activity. Biomolecules, 2021, 11, 862.	1.8	8
5	A novel methodology for hydrogel water content determination by EPR: The basis for real-time monitoring of controlled drug release and hydrogel swelling and degradation. Polymer Testing, 2021, 98, 107187.	2.3	8
6	Triapine Analogues and Their Copper(II) Complexes: Synthesis, Characterization, Solution Speciation, Redox Activity, Cytotoxicity, and mR2 RNR Inhibition. Inorganic Chemistry, 2021, 60, 11297-11319.	1.9	10
7	Facile Synthesis of L-Cysteine Functionalized Graphene Quantum Dots as a Bioimaging and Photosensitive Agent. Nanomaterials, 2021, 11, 1879.	1.9	12
8	Magnetically induced controlled release from glucose-modified liposomes loaded with Fe3O4 nanoparticles. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	1
9	Spin-labeled hydrogels for cell viability assessment by EPR. Free Radical Biology and Medicine, 2021, 177, S76.	1.3	1
10	Triapine Derivatives Act as Copper Delivery Vehicles to Induce Deadly Metal Overload in Cancer Cells. Biomolecules, 2020, 10, 1336.	1.8	12
11	New Water-Soluble Copper(II) Complexes with Morpholine–Thiosemicarbazone Hybrids: Insights into the Anticancer and Antibacterial Mode of Action. Journal of Medicinal Chemistry, 2019, 62, 512-530.	2.9	91
12	Changes of the peripheral blood mononuclear cells membrane fluidity from type 1 Gaucher disease patients: an electron paramagnetic resonance study. Biological Chemistry, 2018, 399, 447-452.	1.2	5
13	Coordinate and redox interactions of epinephrine with ferric and ferrous iron at physiological pH. Scientific Reports, 2018, 8, 3530.	1.6	13
14	Coordination and redox interactions of \hat{l}^2 -lactam antibiotics with Cu2+ in physiological settings and the impact on antibacterial activity. Free Radical Biology and Medicine, 2018, 129, 279-285.	1.3	11
15	Anti-cancer effects of wedelolactone: interactions with copper and subcellular localization. Metallomics, 2018, 10, 1524-1531.	1.0	5
16	Investigation of the Halogenate–Hydrogen Peroxide Reactions Using the Electron Paramagnetic Resonance Spin Trapping Technique. Journal of Physical Chemistry A, 2017, 121, 3207-3212.	1.1	8
17	In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1 G93A ALS rat model. Free Radical Biology and Medicine, 2017, 108, 258-269.	1.3	12
18	Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine. Chemico-Biological Interactions, 2017, 278, 129-134.	1.7	4

#	Article	IF	CITATIONS
19	Maleimido-proxyl as an EPR spin label for the evaluation of conformational changes of albumin. European Biophysics Journal, 2017, 46, 773-787.	1.2	15
20	Investigation of the binding of cis/trans-[MCl4(1H-indazole)(NO)] \hat{a}^{2} (M = Ru, Os) complexes to human serum albumin. Journal of Inorganic Biochemistry, 2016, 159, 37-44.	1.5	12
21	Iron-sulfur cluster damage by the superoxide radical in neural tissues of the SOD1G93A ALS rat model. Free Radical Biology and Medicine, 2016, 96, 313-322.	1.3	20
22	Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radical Biology and Medicine, 2016, 90, 114-125.	1.3	72
23	Photo-redox reactions of indole and ferric iron in water. Applied Catalysis B: Environmental, 2016, 185, 174-180.	10.8	6
24	Formation of stable radicals in catechin/nitrous acid systems: Participation of dinitrosocatechin. Food Chemistry, 2016, 194, 1116-1122.	4.2	10
25	Sterilization of bacteria suspensions and identification of radicals deposited during plasma treatment. Open Chemistry, 2015, 13, .	1.0	21
26	Reactions of superoxide dismutases with HSâ^'/H2S and superoxide radical anion: An inÂvitro EPR study. Nitric Oxide - Biology and Chemistry, 2015, 51, 19-23.	1.2	7
27	Effects of Terminal Dimethylation and Metal Coordination of Proline-2-formylpyridine Thiosemicarbazone Hybrids on Lipophilicity, Antiproliferative Activity, and hR2 RNR Inhibition. Inorganic Chemistry, 2014, 53, 12595-12609.	1.9	24
28	Electronic Structural Flexibility of Heterobimetallic Mn/Fe Cofactors: R2lox and R2c Proteins. Journal of the American Chemical Society, 2014, 136, 13399-13409.	6.6	37
29	Binding of Doxyl Stearic Spin Labels to Human Serum Albumin: An EPR Study. Journal of Physical Chemistry B, 2014, 118, 10898-10905.	1.2	20
30	Energy requirements of the reactions of kaempferol and selected radical species in different media: towards the prediction of the possible radical scavenging mechanisms. Structural Chemistry, 2014, 25, 1795-1804.	1.0	29
31	A highly cytotoxic modified paullone ligand bearing a TEMPO free-radical unit and its copper(ii) complex as potential hR2 RNR inhibitors. Chemical Communications, 2013, 49, 10007.	2.2	18
32	Radicals in the Bray–Liebhafsky Oscillatory Reaction. Journal of Physical Chemistry A, 2013, 117, 3292-3295.	1.1	28
33	Rapid X-ray Photoreduction of Dimetal-Oxygen Cofactors in Ribonucleotide Reductase. Journal of Biological Chemistry, 2013, 288, 9648-9661.	1.6	30
34	Raman microspectroscopy as a biomarking tool for in vitro diagnosis of cancer: a feasibility study. Croatian Medical Journal, 2012, 53, 551-551.	0.2	10
35	A joint application of spectroscopic, electrochemical and theoretical approaches in evaluation of the radical scavenging activity of 3-OH flavones and their iron complexes towards different radical species. Dalton Transactions, 2012, 41, 7295.	1.6	21
36	The Manganese Ion of the Heterodinuclear Mn/Fe Cofactor in <i>Chlamydia trachomatis</i> Ribonucleotide Reductase R2c Is Located at Metal Position 1. Journal of the American Chemical Society, 2012, 134, 123-125.	6.6	30

#	Article	IF	CITATIONS
37	High-valent [MnFe] and [FeFe] cofactors in ribonucleotide reductases. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 430-444.	0.5	14
38	Oxygen Centered Radicals in Iodine Chemical Oscillators. Journal of Physical Chemistry A, 2011, 115, 7955-7958.	1.1	28
39	A Potential Source of Free Radicals in Iodine-Based Chemical Oscillators. Journal of Physical Chemistry A, 2011, 115, 2247-2249.	1.1	14
40	Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde) Tj ETQq0 (Biochemistry, 2011, 105, 1422-1431.	0 0 rgBT /0 1.5	Overlock 10 105
41	Inhibition of chlamydial class Ic ribonucleotide reductase by Câ€terminal peptides from protein R2. Journal of Peptide Science, 2011, 17, 756-762.	0.8	1
42	Ribonucleotide Reductase as One Important Target of [Tris(1,10- phenanthroline)lanthanum(III)] Trithiocyanate (KP772). Current Cancer Drug Targets, 2009, 9, 595-607.	0.8	21
43	Metal Binding and Activity of Ribonucleotide Reductase Protein R2 Mutants: Conditions for Formation of the Mixed Manganeseâ'lron Cofactor. Biochemistry, 2009, 48, 6532-6539.	1.2	12
44	Temperature dependence of oxygen evolution through catalase-like activity of horseradish peroxidase. Russian Journal of Physical Chemistry A, 2007, 81, 1371-1373.	0.1	2
45	Numerically Simulated pH-Induced Reactivation of Catalytic Activity of Horseradish Peroxidase. Annals of the New York Academy of Sciences, 2005, 1048, 457-460.	1.8	2
46	Multi-Field Surface Electrode for Selective Electrical Stimulation. Artificial Organs, 2005, 29, 448-452.	1.0	88
47	E Actitrode: The new selective stimulation interface for functional movements in hemiplegics patients. Serbian Journal of Electrical Engineering, 2004, 1, 21-28.	0.2	19