
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8675152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering of tissue inhibitor of metalloproteinases TIMP-1 for fine discrimination between closely related stromelysins MMP-3 and MMP-10. Journal of Biological Chemistry, 2022, 298, 101654.	1.6	13
2	Structural and computational investigation of MMPâ€3 affinity improvements with an engineered TIMPâ€1 inhibitor. FASEB Journal, 2022, 36, .	0.2	0
3	Developing a recombinant expression system for human serine protease PRSS23. FASEB Journal, 2022, 36, .	0.2	0
4	Activity-based protein profiling reveals active serine proteases that drive malignancy of human ovarian clear cell carcinoma. Journal of Biological Chemistry, 2022, 298, 102146.	1.6	4
5	Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor progression through CD63 in lung adenocarcinoma. Matrix Biology, 2022, 111, 207-225.	1.5	9
6	Enyzmes Matrix Metalloproteinases. , 2021, , 336-353.		1
7	Attacking COVID-19 Progression Using Multi-Drug Therapy for Synergetic Target Engagement. Biomolecules, 2021, 11, 787.	1.8	14
8	Structural and Computational Investigations of an Autoinhibitory Loop in Human Mesorypsin. FASEB Journal, 2021, 35, .	0.2	0
9	MMP1 drives tumor progression in large cell carcinoma of the lung through fibroblast senescence. Cancer Letters, 2021, 507, 1-12.	3.2	33
10	Climbing Up and Down Binding Landscapes through Deep Mutational Scanning of Three Homologous Protein–Protein Complexes. Journal of the American Chemical Society, 2021, 143, 17261-17275.	6.6	11
11	Avidity observed between a bivalent inhibitor and an enzyme monomer with a single active site. PLoS ONE, 2021, 16, e0249616.	1.1	2
12	Targeting an autocrine IL-6–SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma. Oncogene, 2020, 39, 6606-6618.	2.6	15
13	FAM111A protects replication forks from protein obstacles via its trypsin-like domain. Nature Communications, 2020, 11, 1318.	5.8	67
14	Quantitative mapping of binding specificity landscapes for homologous targets by using a high-throughput method. Biochemical Journal, 2020, 477, 1701-1719.	1.7	3
15	Mirolysin structures open a window on gum disease. IUCrJ, 2020, 7, 3-4.	1.0	1
16	Bad Tumors Made Worse: SPINK1. Frontiers in Cell and Developmental Biology, 2019, 7, 10.	1.8	16
17	Directed evolution of the metalloproteinase inhibitor TIMP-1 reveals that its N- and C-terminal domains cooperate in matrix metalloproteinase recognition. Journal of Biological Chemistry, 2019, 294, 9476-9488.	1.6	25
18	Disulfide engineering of human Kunitz-type serine protease inhibitors enhances proteolytic stability and target affinity toward mesotropsin, Journal of Biological Chemistry, 2019, 294, 5105-5120	1.6	20

#	Article	IF	CITATIONS
19	Novel Pathogenic PRSS1 Variant p.Glu190Lys in a Case of Chronic Pancreatitis. Frontiers in Genetics, 2019, 10, 46.	1.1	7
20	PRSS3/Mesotrypsin and kallikrein-related peptidase 5 are associated with poor prognosis and contribute to tumor cell invasion and growth in lung adenocarcinoma. Scientific Reports, 2019, 9, 1844.	1.6	25
21	Trypsin activity governs increased susceptibility to pancreatitis in mice expressing human PRSS1R122H. Journal of Clinical Investigation, 2019, 130, 189-202.	3.9	44
22	Structural Elucidation of Engineered Tissue Inhibitor of Metalloproteinasesâ€1 (TIMPâ€1) Variants with Improved Binding Affinity toward Matrix Metalloproteinaseâ€3 (MMPâ€3). FASEB Journal, 2019, 33, 467.2.	0.2	0
23	Structural Basis for Improved Proteolytic Stability and Target Affinity of Disulfide engineered Human Kunitzâ€ŧype Serine Protease Inhibitors. FASEB Journal, 2019, 33, 472.1.	0.2	0
24	Converting a broad matrix metalloproteinase family inhibitor into a specific inhibitor of <scp>MMP</scp> â€9 and <scp>MMP</scp> â€14. FEBS Letters, 2018, 592, 1122-1134.	1.3	31
25	Pre-equilibrium competitive library screening for tuning inhibitor association rate and specificity toward serine proteases. Biochemical Journal, 2018, 475, 1335-1352.	1.7	6
26	Mapping protein selectivity landscapes using multi-target selective screening and next-generation sequencing of combinatorial libraries. Nature Communications, 2018, 9, 3935.	5.8	13
27	Combinatorial engineering of N-TIMP2 variants that selectively inhibit MMP9 and MMP14 function in the cell. Oncotarget, 2018, 9, 32036-32053.	0.8	15
28	A potent, proteolysis-resistant inhibitor of kallikrein-related peptidase 6 (KLK6) for cancer therapy, developed by combinatorial engineering. Journal of Biological Chemistry, 2018, 293, 12663-12680.	1.6	22
29	Engineering Tissue Inhibitor of Metalloproteinasesâ€1 (TIMPâ€1) as a Selective Inhibitor of Matrix Metalloproteinaseâ€3 (MMPâ€3) for Therapeutic Targeting. FASEB Journal, 2018, 32, 798.7.	0.2	0
30	Development of High Affinity and High Specificity Inhibitors of Matrix Metalloproteinase 14 through Computational Design and Directed Evolution. Journal of Biological Chemistry, 2017, 292, 3481-3495.	1.6	64
31	Therapeutic Potential of Matrix Metalloproteinase Inhibition in Breast Cancer. Journal of Cellular Biochemistry, 2017, 118, 3531-3548.	1.2	105
32	Small molecule inhibitors of mesotrypsin from a structure-based docking screen. PLoS ONE, 2017, 12, e0176694.	1.1	16
33	EGFR as a prognostic biomarker and therapeutic target in ovarian cancer: evaluation of patient cohort and literature review. Genes and Cancer, 2017, 8, 589-599.	0.6	45
34	An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis. Journal of Biological Chemistry, 2016, 291, 26304-26319.	1.6	22
35	MYC Is a Crucial Mediator of TGFβ-Induced Invasion in Basal Breast Cancer. Cancer Research, 2016, 76, 3520-3530.	0.4	12
36	Combinatorial protein engineering of proteolytically resistant mesotrypsin inhibitors as candidates for cancer therapy. Biochemical Journal, 2016, 473, 1329-1341.	1.7	30

#	Article	IF	CITATIONS
37	Matrix metalloproteinases as drivers and therapeutic targets in breast cancer. Frontiers in Bioscience - Landmark, 2015, 20, 1144-1163.	3.0	118
38	Mesotrypsin Has Evolved Four Unique Residues to Cleave Trypsin Inhibitors as Substrates. Journal of Biological Chemistry, 2015, 290, 21523-21535.	1.6	24
39	Tumor cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma. Genes and Cancer, 2015, 6, 480-489.	0.6	79
40	Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancers. Oncotarget, 2015, 6, 35737-35754.	0.8	23
41	Tyrosine Sulfation of Human Trypsin Steers S2' Subsite Selectivity towards Basic Amino Acids. PLoS ONE, 2014, 9, e102063.	1.1	10
42	Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget, 2014, 5, 2736-2749.	0.8	290
43	Sequence and Conformational Specificity in Substrate Recognition. Journal of Biological Chemistry, 2014, 289, 32783-32797.	1.6	30
44	Tumor Cell–Derived MMP3 Orchestrates Rac1b and Tissue Alterations That Promote Pancreatic Adenocarcinoma. Molecular Cancer Research, 2014, 12, 1430-1439.	1.5	45
45	Zymogen Activation Confers Thermodynamic Stability on a Key Peptide Bond and Protects Human Cationic Trypsin from Degradation. Journal of Biological Chemistry, 2014, 289, 4753-4761.	1.6	9
46	Human Trypsins. , 2013, , 2600-2609.		7
46 47	Human Trypsins. , 2013, , 2600-2609. Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation. Journal of Biological Chemistry, 2013, 288, 9848-9859.	1.6	7 32
	Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C,	1.6 2.4	
47	Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation. Journal of Biological Chemistry, 2013, 288, 9848-9859. TIMP-1 Attenuates Blood–Brain Barrier Permeability in Mice with Acute Liver Failure. Journal of		32
47 48	Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation. Journal of Biological Chemistry, 2013, 288, 9848-9859. TIMP-1 Attenuates Blood–Brain Barrier Permeability in Mice with Acute Liver Failure. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1041-1049. PRSS3/mesotrypsin in prostate cancer progression: implications for translational medicine. Asian	2.4	32 38
47 48 49	 Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation. Journal of Biological Chemistry, 2013, 288, 9848-9859. TIMP-1 Attenuates Blood–Brain Barrier Permeability in Mice with Acute Liver Failure. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1041-1049. PRSS3/mesotrypsin in prostate cancer progression: implications for translational medicine. Asian Journal of Andrology, 2013, 15, 439-440. Matrix Metalloproteinase-10/TIMP-2 Structure and Analyses Define Conserved Core Interactions and 	2.4 0.8	32 38 10
47 48 49 50	 Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation. Journal of Biological Chemistry, 2013, 288, 9848-9859. TIMP-1 Attenuates Blood–Brain Barrier Permeability in Mice with Acute Liver Failure. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1041-1049. PRSS3/mesotrypsin in prostate cancer progression: implications for translational medicine. Asian Journal of Andrology, 2013, 15, 439-440. Matrix Metalloproteinase-10/TIMP-2 Structure and Analyses Define Conserved Core Interactions and Diverse Exosite Interactions in MMP/TIMP Complexes. PLoS ONE, 2013, 8, e75836. Biochemical and structural insights into mesotrypsin: an unusual human trypsin. International 	2.4 0.8 1.1	32 38 10 39
47 48 49 50 51	 Long-range Electrostatic Complementarity Governs Substrate Recognition by Human Chymotrypsin C, a Key Regulator of Digestive Enzyme Activation. Journal of Biological Chemistry, 2013, 288, 9848-9859. TIMP-1 Attenuates Blood–Brain Barrier Permeability in Mice with Acute Liver Failure. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1041-1049. PRSS3/mesotrypsin in prostate cancer progression: implications for translational medicine. Asian Journal of Andrology, 2013, 15, 439-440. Matrix Metalloproteinase-10/TIMP-2 Structure and Analyses Define Conserved Core Interactions and Diverse Exosite Interactions in MMP/TIMP Complexes. PLoS ONE, 2013, 8, e75836. Biochemical and structural insights into mesotrypsin: an unusual human trypsin. International Journal of Biochemistry and Molecular Biology, 2013, 4, 129-39. Matrix Metalloproteinase Induction of Rac1b, a Key Effector of Lung Cancer Progression. Science 	2.4 0.8 1.1 0.1	 32 38 10 39 16

#	Article	IF	CITATIONS
55	PEGylation Extends Circulation Half-Life While Preserving In Vitro and In Vivo Activity of Tissue Inhibitor of Metalloproteinases-1 (TIMP-1). PLoS ONE, 2012, 7, e50028.	1.1	39
56	Presence <i>versus</i> absence of hydrogen bond donor Tyrâ€39 influences interactions of cationic trypsin and mesotrypsin with protein protease inhibitors. Protein Science, 2012, 21, 1103-1112.	3.1	16
57	Matrix Metalloproteinase-10 (MMP-10) Interaction with Tissue Inhibitors of Metalloproteinases TIMP-1 and TIMP-2. Journal of Biological Chemistry, 2012, 287, 15935-15946.	1.6	88
58	Matrix Metalloproteinase-10 Is Required for Lung Cancer Stem Cell Maintenance, Tumor Initiation and Metastatic Potential. PLoS ONE, 2012, 7, e35040.	1.1	87
59	Abstract LB-204: Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential. , 2012, , .		1
60	The P2′ residue is a key determinant of mesotrypsin specificity: engineering a high-affinity inhibitor with anticancer activity. Biochemical Journal, 2011, 440, 95-105.	1.7	37
61	Identifying the Stroma as a Critical Player in Radiation-Induced Mammary Tumor Development. Cancer Cell, 2011, 19, 571-572.	7.7	2
62	High Affinity Small Protein Inhibitors of Human Chymotrypsin C (CTRC) Selected by Phage Display Reveal Unusual Preference for P4′ Acidic Residues. Journal of Biological Chemistry, 2011, 286, 22535-22545.	1.6	30
63	Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 201-212.	1.0	408
64	Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109. Breast Cancer Research and Treatment, 2010, 124, 27-38.	1.1	56
65	Determinants of Affinity and Proteolytic Stability in Interactions of Kunitz Family Protease Inhibitors with Mesotrypsin. Journal of Biological Chemistry, 2010, 285, 36884-36896.	1.6	43
66	The Amyloid Precursor Protein/Protease Nexin 2 Kunitz Inhibitor Domain Is a Highly Specific Substrate of Mesotrypsin. Journal of Biological Chemistry, 2010, 285, 1939-1949.	1.6	35
67	The 19-Amino Acid Insertion in the Tumor-associated Splice Isoform Rac1b Confers Specific Binding to p120 Catenin. Journal of Biological Chemistry, 2010, 285, 19153-19161.	1.6	33
68	Cathepsin D. Cancer Biology and Therapy, 2010, 10, 467-470.	1.5	13
69	Homology with Vesicle Fusion Mediator Syntaxin-1a Predicts Determinants of Epimorphin/Syntaxin-2 Function in Mammary Epithelial Morphogenesis. Journal of Biological Chemistry, 2009, 284, 6877-6884.	1.6	29
70	Structural Basis for Accelerated Cleavage of Bovine Pancreatic Trypsin Inhibitor (BPTI) by Human Mesotrypsin. Journal of Biological Chemistry, 2008, 283, 4115-4123.	1.6	55
71	Stromal induction of breast cancer: Inflammation and invasion. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 279-287.	2.6	127
72	Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6835-6840.	3.3	118

#	Article	IF	CITATIONS
73	Role of the Intramolecular Hydrogen Bond Network in the Inhibitory Power of Chymotrypsin Inhibitor 2â€,‡. Biochemistry, 2005, 44, 6823-6830.	1.2	37
74	Binding, Proteolytic, and Crystallographic Analyses of Mutations at the Proteaseâ^'Inhibitor Interface of the Subtilisin BPNâ€~/Chymotrypsin Inhibitor 2 Complexâ€,‡. Biochemistry, 2004, 43, 13648-13656.	1.2	45
75	The Role of the Protein Core in the Inhibitory Power of the Classic Serine Protease Inhibitor, Chymotrypsin Inhibitor 2â€. Biochemistry, 2003, 42, 6484-6492.	1.2	28
76	A clogged gutter mechanism for protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10316-10321.	3.3	138
77	Squalene Synthase: Steady-State, Pre-Steady-State, and Isotope-Trapping Studiesâ€. Biochemistry, 2000, 39, 1748-1760.	1.2	36
78	Farnesyl Protein Transferase: Identification of K164α and Y300β as Catalytic Residues by Mutagenesis and Kinetic Studiesâ€. Biochemistry, 1999, 38, 11239-11249.	1.2	37
79	Haplotype Analysis of Hemochromatosis: Evaluation of Different Linkage-Disequilibrium Approaches and Evolution of Disease Chromosomes. American Journal of Human Genetics, 1997, 60, 1439-1447.	2.6	118
80	Mapping recombinant events with molecular markers in hemochromatosis pedigrees. Cytogenetic and Genome Research, 1994, 67, 126-128.	0.6	4
81	Novel cytotoxic topoisomerase II inhibiting pyrroloiminoquinones from Fijian sponges of the genus Zyzzya. Journal of the American Chemical Society, 1993, 115, 1632-1638.	6.6	203
82	Uroporphyrinogen decarboxylase: a splice site mutation causes the deletion of exon 6 in multiple families with porphyria cutanea tarda Journal of Clinical Investigation, 1990, 86, 1416-1422.	3.9	65