Heather C Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8674946/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vibrational Spectroscopic Characterization of Hematite, Maghemite, and Magnetite Thin Films Produced by Vapor Deposition. ACS Applied Materials & Interfaces, 2010, 2, 2804-2812.	4.0	652
2	Vibrational Spectroscopy of Aqueous Sodium Halide Solutions and Airâ^'Liquid Interfaces:  Observation of Increased Interfacial Depth. Journal of Physical Chemistry B, 2004, 108, 2252-2260.	1.2	460
3	Vibrational Spectroscopic Studies of Aqueous Interfaces:  Salts, Acids, Bases, and Nanodrops. Chemical Reviews, 2006, 106, 1155-1175.	23.0	414
4	Unified Molecular Picture of the Surfaces of Aqueous Acid, Base, and Salt Solutions. Journal of Physical Chemistry B, 2005, 109, 7617-7623.	1.2	393
5	Interfacial Water Structure Associated with Phospholipid Membranes Studied by Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy. Journal of the American Chemical Society, 2010, 132, 11336-11342.	6.6	341
6	DPPC Langmuir Monolayer at the Airâ^'Water Interface:  Probing the Tail and Head Groups by Vibrational Sum Frequency Generation Spectroscopy. Langmuir, 2006, 22, 5341-5349.	1.6	274
7	Airâ^'Liquid Interfaces of Aqueous Solutions Containing Ammonium and Sulfate:Â Spectroscopic and Molecular Dynamics Studies. Journal of Physical Chemistry B, 2005, 109, 8861-8872.	1.2	195
8	Environmental Chemistry at Vapor/Water Interfaces: Insights from Vibrational Sum Frequency Generation Spectroscopy. Annual Review of Physical Chemistry, 2012, 63, 107-130.	4.8	133
9	Surface Studies of Aqueous Methanol Solutions by Vibrational Broad Bandwidth Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 6343-6349.	1.2	132
10	Observation of Hydronium Ions at the Airâ^'Aqueous Acid Interface:  Vibrational Spectroscopic Studies of Aqueous HCl, HBr, and HI. Journal of Physical Chemistry C, 2007, 111, 8814-8826.	1.5	131
11	Ionic Binding of Na ⁺ versus K ⁺ to the Carboxylic Acid Headgroup of Palmitic Acid Monolayers Studied by Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry A, 2009, 113, 7383-7393.	1.1	117
12	Shedding light on water structure at air–aqueous interfaces: ions, lipids, and hydration. Physical Chemistry Chemical Physics, 2009, 11, 5538.	1.3	112
13	The Analysis of Interference Effects in the Sum Frequency Spectra of Water Interfacesâ€. Journal of Physical Chemistry A, 2000, 104, 10220-10226.	1.1	107
14	Binding of Mg ²⁺ and Ca ²⁺ to Palmitic Acid and Deprotonation of the COOH Headgroup Studied by Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry B, 2010, 114, 17068-17076.	1.2	95
15	Surface Structural Studies of Methanesulfonic Acid at Air /Aqueous Solution Interfaces Using Vibrational Sum Frequency Spectroscopyâ€. Journal of Physical Chemistry A, 2001, 105, 1649-1655.	1.1	88
16	Na ⁺ and Ca ²⁺ Effect on the Hydration and Orientation of the Phosphate Group of DPPC at Air <i>â^'</i> Water and Air <i>â^'</i> Hydrated Silica Interfaces. Journal of Physical Chemistry B, 2010, 114, 9485-9495.	1.2	84
17	Aqueous divalent metal–nitrate interactions: hydration versus ion pairing. Physical Chemistry Chemical Physics, 2008, 10, 4793.	1.3	82
18	Surface pK _a of octanoic, nonanoic, and decanoic fatty acids at the air–water interface: applications to atmospheric aerosol chemistry. Physical Chemistry Chemical Physics, 2017, 19, 26551-26558.	1.3	80

#	Article	IF	CITATIONS
19	Organization of Water and Atmospherically Relevant Ions and Solutes: Vibrational Sum Frequency Spectroscopy at the Vapor/Liquid and Liquid/Solid Interfaces. Accounts of Chemical Research, 2012, 45, 110-119.	7.6	73
20	Interfacial Water Structure and Effects of Mg2+and Ca2+Binding to the COOH Headgroup of a Palmitic Acid Monolayer Studied by Sum Frequency Spectroscopy. Journal of Physical Chemistry B, 2011, 115, 34-40.	1.2	69
21	Bulk Contributions Modulate the Sum-Frequency Generation Spectra of Water on Model Sea-Spray Aerosols. CheM, 2018, 4, 1629-1644.	5.8	69
22	From Conventional to Phase-Sensitive Vibrational Sum Frequency Generation Spectroscopy: Probing Water Organization at Aqueous Interfaces. Journal of Physical Chemistry Letters, 2012, 3, 3012-3028.	2.1	67
23	Effect of cation enrichment on dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. Journal of Colloid and Interface Science, 2016, 478, 353-364.	5.0	66
24	Electric Field Reversal of Na ₂ SO ₄ , (NH ₄) ₂ SO ₄ , and Na ₂ CO ₃ Relative to CaCl ₂ and NaCl at the Air/Aqueous Interface Revealed by Heterodyne Detected Phase-Sensitive Sum Frequency. Journal of Physical Chemistry Letters, 2011, 2, 2515-2520.	2.1	64
25	Direct comparison of phase-sensitive vibrational sum frequency generation with maximum entropy method: Case study of water. Journal of Chemical Physics, 2011, 135, 224701.	1.2	58
26	Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry. Atmosphere, 2013, 4, 315-336.	1.0	57
27	Surface Potential of DPPC Monolayers on Concentrated Aqueous Salt Solutions. Journal of Physical Chemistry B, 2016, 120, 2043-2052.	1.2	57
28	Surface organization of aqueous MgCl ₂ and application to atmospheric marine aerosol chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6616-6621.	3.3	56
29	Dangling OD Confined in a Langmuir Monolayer. Journal of the American Chemical Society, 2007, 129, 14053-14057.	6.6	53
30	Cation Effects on Interfacial Water Organization of Aqueous Chloride Solutions. I. Monovalent Cations: Li ⁺ , Na ⁺ , K ⁺ , and NH ₄ ⁺ . Journal of Physical Chemistry B, 2014, 118, 8433-8440.	1.2	52
31	Functional Group Identification for FTIR Spectra Using Image-Based Machine Learning Models. Analytical Chemistry, 2021, 93, 9711-9718.	3.2	51
32	Interaction of <scp>l</scp> -Phenylalanine with a Phospholipid Monolayer at the Water–Air Interface. Journal of Physical Chemistry B, 2015, 119, 9038-9048.	1.2	47
33	Water Structure at the Airâ Aqueous Interface of Divalent Cation and Nitrate Solutions. Journal of Physical Chemistry B, 2009, 113, 4102-4110.	1.2	43
34	Relative Order of Sulfuric Acid, Bisulfate, Hydronium, and Cations at the Air–Water Interface. Journal of the American Chemical Society, 2015, 137, 13920-13926.	6.6	42
35	Sodium–carboxylate contact ion pair formation induces stabilization of palmitic acid monolayers at high pH. Physical Chemistry Chemical Physics, 2017, 19, 10481-10490.	1.3	42
36	Interfacial Supramolecular Structures of Amphiphilic Receptors Drive Aqueous Phosphate Recognition. Journal of the American Chemical Society, 2019, 141, 7876-7886.	6.6	42

#	Article	IF	CITATIONS
37	Effect of pH and Salt on Surface p <i>K</i> _a of Phosphatidic Acid Monolayers. Langmuir, 2018, 34, 530-539.	1.6	41
38	Hydrophobic Collapse of a Stearic Acid Film by Adsorbed l-Phenylalanine at the Air–Water Interface. Journal of Physical Chemistry B, 2012, 116, 7849-7857.	1.2	40
39	Nitrate Anions and Ion Pairing at the Airâ^'Aqueous Interface. Journal of Physical Chemistry C, 2009, 113, 2082-2087.	1.5	39
40	Impact of Salt Purity on Interfacial Water Organization Revealed by Conventional and Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 19577-19585.	1.5	38
41	Surface organization of a DPPC monolayer on concentrated SrCl ₂ and ZnCl ₂ solutions. Physical Chemistry Chemical Physics, 2016, 18, 32345-32357.	1.3	38
42	Oxidation of oleic acid at air/liquid interfaces. Journal of Geophysical Research, 2007, 112, .	3.3	37
43	Surface Electric Fields of Aqueous Solutions of NH ₄ NO ₃ , Mg(NO ₃) ₂ , NaNO ₃ , and LiNO ₃ : Implications for Atmospheric Aerosol Chemistry. Journal of Physical Chemistry C, 2014, 118, 24941-24949.	1.5	37
44	Molecular-level origin of the carboxylate head group response to divalent metal ion complexation at the air–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14874-14880.	3.3	37
45	New Insights into Lung Surfactant Monolayers Using Vibrational Sum Frequency Generation Spectroscopy. Photochemistry and Photobiology, 2006, 82, 1517-1529.	1.3	36
46	Methanol Reaction with Sulfuric Acid:  A Vibrational Spectroscopic Study. Journal of Physical Chemistry B, 2004, 108, 17666-17674.	1.2	34
47	Arginine–Phosphate Recognition Enhanced in Phospholipid Monolayers at Aqueous Interfaces. Journal of Physical Chemistry C, 2018, 122, 26362-26371.	1.5	29
48	Solvation of Calcium–Phosphate Headgroup Complexes at the DPPC/Aqueous Interface. ChemPhysChem, 2015, 16, 3910-3915.	1.0	27
49	Iron(III) Speciation Observed at Aqueous and Glycerol Surfaces: Vibrational Sum Frequency and X-ray. Journal of the American Chemical Society, 2019, 141, 13525-13535.	6.6	27
50	Effect of Magnesium Cation on the Interfacial Properties of Aqueous Salt Solutions. Journal of Physical Chemistry A, 2010, 114, 8359-8368.	1.1	26
51	Solvent-Shared Ion Pairs at the Air–Solution Interface of Magnesium Chloride and Sulfate Solutions Revealed by Sum Frequency Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2017, 121, 6450-6459.	1.1	26
52	Thermodynamic Signatures of the Origin of <i>Anti</i> Hofmeister Selectivity for Phosphate at Aqueous Interfaces. Journal of Physical Chemistry A, 2020, 124, 5621-5630.	1.1	23
53	Salty Glycerol versus Salty Water Surface Organization: Bromide and Iodide Surface Propensities. Journal of Physical Chemistry A, 2013, 117, 6346-6353.	1.1	22
54	Thermodynamic <i>versus</i> non-equilibrium stability of palmitic acid monolayers in calcium-enriched sea spray aerosol proxy systems. Physical Chemistry Chemical Physics, 2018, 20, 16320-16332.	1.3	21

#	Article	IF	CITATIONS
55	Surface Prevalence of Perchlorate Anions at the Air/Aqueous Interface. Journal of Physical Chemistry Letters, 2013, 4, 4231-4236.	2.1	20
56	Cation effects on phosphatidic acid monolayers at various pH conditions. Chemistry and Physics of Lipids, 2016, 200, 24-31.	1.5	20
57	Influence of Salt Purity on Na ⁺ and Palmitic Acid Interactions. Journal of Physical Chemistry A, 2013, 117, 13412-13418.	1.1	18
58	Uptake and Surface Reaction of Methanol by Sulfuric Acid Solutions Investigated by Vibrational Sum Frequency Generation and Raman Spectroscopies. Journal of Physical Chemistry A, 2008, 112, 7873-7880.	1.1	17
59	Incorporation and Exclusion of Long Chain Alkyl Halides in Fatty Acid Monolayers at the Airâ^'Water Interface. Langmuir, 2010, 26, 18806-18816.	1.6	17
60	Reduced Condensing and Ordering Effects by 7-Ketocholesterol and 5β,6β-Epoxycholesterol on DPPC Monolayers. Langmuir, 2015, 31, 9859-9869.	1.6	17
61	La3+ and Y3+ interactions with the carboxylic acid moiety at the liquid/vapor interface: Identification of binding complexes, charge reversal, and detection limits. Journal of Colloid and Interface Science, 2022, 608, 2169-2180.	5.0	17
62	1-Methyl Naphthalene Reorientation at the Airâ^'Liquid Interface upon Water Saturation Studied by Vibrational Broad Bandwidth Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 10823-10828.	1.2	16
63	Bisulfate Dehydration at Air/Solution Interfaces Probed by Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 13161-13168.	1.5	15
64	Relating Structure and Ice Nucleation of Mixed Surfactant Systems Relevant to Sea Spray Aerosol. Journal of Physical Chemistry A, 2020, 124, 8806-8821.	1.1	15
65	Collapse Mechanisms of Nascent and Aged Sea Spray Aerosol Proxy Films. Atmosphere, 2018, 9, 503.	1.0	13
66	Role of Hydration in Magnesium versus Calcium Ion Pairing with Carboxylate: Solution and the Aqueous Interface. Journal of Physical Chemistry B, 2021, 125, 11308-11319.	1.2	13
67	Extracting Infrared Spectra of Protein Secondary Structures Using a Library of Protein Spectra and the Ramachandran Plot. Journal of Physical Chemistry B, 2015, 119, 13079-13092.	1.2	12
68	Lipid composition and molecular interactions change with depth in the avian stratum corneum to regulate cutaneous water loss. Journal of Experimental Biology, 2015, 218, 3032-3041.	0.8	11
69	The Ocean's Elevator: Evolution of the Air–Seawater Interface during a Small-Scale Algal Bloom. ACS Earth and Space Chemistry, 2020, 4, 2347-2357.	1.2	11
70	Organization of lipids in avian stratum corneum: Changes with temperature and hydration. Chemistry and Physics of Lipids, 2016, 195, 47-57.	1.5	10
71	Molecular Recognition and Hydration Energy Mismatch Combine To Inform Ion Binding Selectivity at Aqueous Interfaces. Journal of Physical Chemistry A, 2020, 124, 10171-10180.	1.1	10
72	Effects of laser excitation wavelength and optical mode on Raman spectra of human fresh colon, pancreas, and prostate tissues. Journal of Raman Spectroscopy, 2014, 45, 773-780.	1.2	9

#	Article	IF	CITATIONS
73	Hydration of ferric chloride and nitrate in aqueous solutions: water-mediated ion pairing revealed by Raman spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 19172-19180.	1.3	9
74	Vibrational Spectroscopy of Gas–Liquid Interfaces. , 2018, , 105-133.		8
75	Calcium bridging drives polysaccharide co-adsorption to a proxy sea surface microlayer. Physical Chemistry Chemical Physics, 2021, 23, 16401-16416.	1.3	8
76	Circuit Analysis of Ionizing Surface Potential Measurements of Electrolyte Solutions. Journal of the Electrochemical Society, 2021, 168, 016507.	1.3	8
77	Structural Effects of Cation Binding to DPPC Monolayers. Langmuir, 2020, 36, 15258-15269.	1.6	8
78	Hydration and Hydrogen Bond Order of Octadecanoic Acid and Octadecanol Films on Water at 21 and 1 A°C. Journal of Physical Chemistry A, 2021, 125, 10065-10078.	1.1	8
79	Interfacial properties of avian stratum corneum monolayers investigated by Brewster angle microscopy and vibrational sum frequency generation. Chemistry and Physics of Lipids, 2017, 208, 1-9.	1.5	7
80	Trace Metal Enrichment Driven by Phosphate Functional Group Binding Selectivity. Journal of Geophysical Research: Oceans, 2018, 123, 5286-5297.	1.0	7
81	Biogeochemical Equation of State for the Sea-Air Interface. Atmosphere, 2019, 10, 230.	1.0	7
82	Sodium Drives Interfacial Equilibria for Semi-Soluble Phosphoric and Phosphonic Acids of Model Sea Spray Aerosol Surfaces. ACS Earth and Space Chemistry, 2020, 4, 1549-1557.	1.2	7
83	Recognition competes with hydration in anion-triggered monolayer formation of cyanostar supra-amphiphiles at aqueous interfaces. Chemical Science, 2022, 13, 4283-4294.	3.7	7
84	Discerning Poly- and Monosaccharide Enrichment Mechanisms: Alginate and Glucuronate Adsorption to a Stearic Acid Sea Surface Microlayer. ACS Earth and Space Chemistry, 2022, 6, 1581-1595.	1.2	6
85	Insight into the Ionizing Surface Potential Method and Aqueous Sodium Halide Surfaces. Langmuir, 2021, 37, 7863-7874.	1.6	5
86	Zinc–Carboxylate Binding in Mixed Octadecanoic Acid and Octadecanol Monolayers on Proxy Seawater Solution Surfaces. ACS Earth and Space Chemistry, 2021, 5, 2947-2956.	1.2	4
87	Presence and persistence of a highly ordered lipid phase state in the avian stratum corneum. Journal of Experimental Biology, 2018, 221, .	0.8	3
88	Vibrational exciton delocalization precludes the use of infrared intensities as proxies for surfactant accumulation on aqueous surfaces. Chemical Science, 2021, 12, 8320-8332.	3.7	3
89	An easily accessible isospiropyran switch. Organic and Biomolecular Chemistry, 2019, 17, 9124-9128.	1.5	2
90	One-Pot Aldol Cascade for the Preparation of Isospiropyrans, Flavylium Salts, and bis-Spiropyrans. Journal of Organic Chemistry, 2020, 85, 8013-8020.	1.7	2

#	Article	IF	CITATIONS
91	Preface: Special Topic on Ions in Water. Journal of Chemical Physics, 2018, 148, 222501.	1.2	1
92	Phase State and Thermodynamic Properties of Proxy Sea Spray Aerosol Interfaces Derived from Temperature-Dependent Equilibrium Spreading Pressure. ACS Earth and Space Chemistry, 2022, 6, 1563-1573.	1.2	1
93	Preface of John C. Hemminger Festschrift. Journal of Physical Chemistry C, 2014, 118, 28923-28923.	1.5	0