Peter Setlow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8674276/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Resistance of Bacillus Endospores to Extreme Terrestrial and Extraterrestrial Environments. Microbiology and Molecular Biology Reviews, 2000, 64, 548-572.	2.9	1,656
2	Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 2006, 101, 514-525.	1.4	1,204
3	Spore germination. Current Opinion in Microbiology, 2003, 6, 550-556.	2.3	760
4	Mechanisms for the Prevention of Damage to DNA in Spores of Bacillus Species. Annual Review of Microbiology, 1995, 49, 29-54.	2.9	388
5	I will survive: DNA protection in bacterial spores. Trends in Microbiology, 2007, 15, 172-180.	3.5	379
6	Bacillus subtiliscontains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Molecular Microbiology, 1998, 29, 189-198.	1.2	376
7	Cermination of Spores of Bacillus Species: What We Know and Do Not Know. Journal of Bacteriology, 2014, 196, 1297-1305.	1.0	376
8	Characterization of Spores of Bacillus subtilis Which Lack Dipicolinic Acid. Journal of Bacteriology, 2000, 182, 5505-5512.	1.0	357
9	Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends in Microbiology, 2011, 19, 85-94.	3.5	319
10	Genetic Requirements for Induction of Germination of Spores of Bacillus subtilis by Ca 2+ -Dipicolinate. Journal of Bacteriology, 2001, 183, 4886-4893.	1.0	261
11	Role of Ger Proteins in Nutrient and Nonnutrient Triggering of Spore Germination in Bacillus subtilis. Journal of Bacteriology, 2000, 182, 2513-2519.	1.0	253
12	Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. Journal of Applied Microbiology, 2003, 95, 54-67.	1.4	244
13	Small, Acid-Soluble Spore Proteins of Bacillus Species: Structure, Synthesis, Genetics, Function, and Degradation. Annual Review of Microbiology, 1988, 42, 319-338.	2.9	243
14	The Forespore Line of Gene Expression in Bacillus subtilis. Journal of Molecular Biology, 2006, 358, 16-37.	2.0	242
15	Spore Resistance Properties. Microbiology Spectrum, 2014, 2, .	1.2	242
16	Mechanisms which contribute to the longâ€ŧerm survival of spores of <i>Bacillus</i> species. Journal of Applied Bacteriology, 1994, 76, 49S-60S.	1.1	235
17	Role of DNA repair in Bacillus subtilis spore resistance. Journal of Bacteriology, 1996, 178, 3486-3495.	1.0	214
18	Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 15405-15410.	3.3	209

#	Article	IF	CITATIONS
19	Bacterial spore structures and their protective role in biocide resistance. Journal of Applied Microbiology, 2012, 113, 485-498.	1.4	203
20	Response of Spores to Highâ€Pressure Processing. Comprehensive Reviews in Food Science and Food Safety, 2007, 6, 103-119.	5.9	193
21	Essential role of small, acid-soluble spore proteins in resistance of Bacillus subtilis spores to UV light. Journal of Bacteriology, 1986, 167, 174-178.	1.0	189
22	Role of Dipicolinic Acid in Resistance and Stability of Spores of Bacillus subtilis with or without DNA-Protective α/β-Type Small Acid-Soluble Proteins. Journal of Bacteriology, 2006, 188, 3740-3747.	1.0	186
23	Mechanisms of Induction of Germination of Bacillus subtilis Spores by High Pressure. Applied and Environmental Microbiology, 2002, 68, 3172-3175.	1.4	181
24	Mechanisms of killing spores of Bacillus subtilis by acid, alkali and ethanol. Journal of Applied Microbiology, 2002, 92, 362-375.	1.4	176
25	I will survive: protecting and repairing spore DNA. Journal of Bacteriology, 1992, 174, 2737-2741.	1.0	171
26	How Moist Heat Kills Spores of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2007, 189, 8458-8466.	1.0	170
27	Germination of Spores of the Orders <i>Bacillales</i> and <i>Clostridiales</i> . Annual Review of Microbiology, 2017, 71, 459-477.	2.9	170
28	Lipids in the inner membrane of dormant spores of Bacillus species are largely immobile. Proceedings of the United States of America, 2004, 101, 7733-7738.	3.3	167
29	Biochemical studies of bacterial sporulation and germination. XXII. Energy metabolism in early stages of germination of Bacillus megaterium spores. Journal of Biological Chemistry, 1970, 245, 3637-44.	1.6	164
30	Resistance of spores ofBacillus species to ultraviolet light. Environmental and Molecular Mutagenesis, 2001, 38, 97-104.	0.9	160
31	Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. Journal of Applied Microbiology, 2002, 92, 1105-1115.	1.4	157
32	Regulation of expression of genes coding for small, acid-soluble proteins of Bacillus subtilis spores: studies using lacZ gene fusions. Journal of Bacteriology, 1988, 170, 239-244.	1.0	156
33	The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 571, 249-264.	0.4	155
34	Biochemical Studies of Bacterial Sporulation and Germination. Journal of Biological Chemistry, 1970, 245, 3637-3644.	1.6	154
35	Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtilis spores to hydrogen peroxide. Applied and Environmental Microbiology, 1993, 59, 3418-3423.	1.4	154
36	Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent stress. Journal of Applied Microbiology, 2004, 97, 838-852.	1.4	149

#	Article	IF	CITATIONS
37	<i>Clostridium perfringens</i> Spore Germination: Characterization of Germinants and Their Receptors. Journal of Bacteriology, 2008, 190, 1190-1201.	1.0	143
38	The physical state of water in bacterial spores. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19334-19339.	3.3	141
39	A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: Implications for spore dormancy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4209-4214.	3.3	140
40	Analysis of the peptidoglycan structure of Bacillus subtilis endospores. Journal of Bacteriology, 1996, 178, 6451-6458.	1.0	132
41	Localization of a Germinant Receptor Protein (GerBA) to the Inner Membrane of Bacillus subtilis Spores. Journal of Bacteriology, 2001, 183, 3982-3990.	1.0	131
42	Germination of spores of Bacillus subtilis with dodecylamine. Journal of Applied Microbiology, 2003, 95, 637-648.	1.4	131
43	Levels of Ca 2+ -Dipicolinic Acid in Individual Bacillus Spores Determined Using Microfluidic Raman Tweezers. Journal of Bacteriology, 2007, 189, 4681-4687.	1.0	130
44	Studies of the Commitment Step in the Germination of Spores of <i>Bacillus</i> Species. Journal of Bacteriology, 2010, 192, 3424-3433.	1.0	129
45	Prevention of DNA damage in spores and in vitro by small, acid-soluble proteins from Bacillus species. Journal of Bacteriology, 1993, 175, 1367-1374.	1.0	128
46	Cooperativity Between Different Nutrient Receptors in Germination of Spores of Bacillus subtilis and Reduction of This Cooperativity by Alterations in the GerB Receptor. Journal of Bacteriology, 2006, 188, 28-36.	1.0	126
47	Properties of Spores of Bacillus subtilis Blocked at an Intermediate Stage in Spore Germination. Journal of Bacteriology, 2001, 183, 4894-4899.	1.0	125
48	Isolation and Characterization of Superdormant Spores of <i>Bacillus</i> Species. Journal of Bacteriology, 2009, 191, 1787-1797.	1.0	125
49	Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid. Journal of Applied Microbiology, 2000, 89, 330-338.	1.4	124
50	Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers. Nature Protocols, 2011, 6, 625-639.	5.5	123
51	The Bacillus subtilis spore coat provides "eat resistance" during phagocytic predation by the protozoan Tetrahymena thermophila. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 165-170.	3.3	121
52	Summer meeting 2013 - when the sleepers wake: the germination of spores of <i>Bacillus </i> species. Journal of Applied Microbiology, 2013, 115, 1251-1268.	1.4	121
53	Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA-binding proteins. Applied and Environmental Microbiology, 1995, 61, 3633-3638.	1.4	121
54	Factors Influencing Germination of Bacillus subtilis Spores via Activation of Nutrient Receptors by High Pressure. Applied and Environmental Microbiology, 2005, 71, 5879-5887.	1.4	118

#	Article	IF	CITATIONS
55	Comparison of the Binuclear Metalloenzymes Diphosphoglycerate-Independent Phosphoglycerate Mutase and Alkaline Phosphatase:  Their Mechanism of Catalysis via a Phosphoserine Intermediate. Chemical Reviews, 2001, 101, 607-618.	23.0	115
56	Control of transcription of the Bacillus subtilis spoIIIG gene, which codes for the forespore-specific transcription factor sigma G. Journal of Bacteriology, 1991, 173, 2977-2984.	1.0	114
57	Levels of H+ and other monovalent cations in dormant and germinating spores of Bacillus megaterium. Journal of Bacteriology, 1981, 148, 20-29.	1.0	111
58	Effect of chromosome location of Bacillus subtilis forespore genes on their spo gene dependence and transcription by E sigma F: identification of features of good E sigma F-dependent promoters. Journal of Bacteriology, 1991, 173, 7867-7874.	1.0	109
59	Studies on the mechanism of killing of Bacillus subtilis spores by hydrogen peroxide. Journal of Applied Microbiology, 2002, 93, 316-325.	1.4	108
60	Effects of Overexpression of Nutrient Receptors on Germination of Spores of Bacillus subtilis. Journal of Bacteriology, 2003, 185, 2457-2464.	1.0	108
61	Analysis of factors that influence the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. Journal of Applied Microbiology, 2005, 98, 606-617.	1.4	104
62	Structure of a protein–DNA complex essential for DNA protection in spores of <i>Bacillus</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2806-2811.	3.3	103
63	Cloning, nucleotide sequence, and regulation of the Bacillus subtilis gpr gene, which codes for the protease that initiates degradation of small, acid-soluble proteins during spore germination. Journal of Bacteriology, 1991, 173, 291-300.	1.0	101
64	The Products of the spoVA Operon Are Involved in Dipicolinic Acid Uptake into Developing Spores of Bacillus subtilis. Journal of Bacteriology, 2002, 184, 584-587.	1.0	98
65	Localization of the Cortex Lytic Enzyme CwlJ in Spores of Bacillus subtilis. Journal of Bacteriology, 2002, 184, 1219-1224.	1.0	98
66	Roles of Small, Acid-Soluble Spore Proteins and Core Water Content in Survival of <i>Bacillus subtilis</i> Spores Exposed to Environmental Solar UV Radiation. Applied and Environmental Microbiology, 2009, 75, 5202-5208.	1.4	98
67	Role of SpoVA Proteins in Release of Dipicolinic Acid during Germination of Bacillus subtilis Spores Triggered by Dodecylamine or Lysozyme. Journal of Bacteriology, 2007, 189, 1565-1572.	1.0	97
68	Measurements of the pH within dormant and germinated bacterial spores Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 2474-2476.	3.3	96
69	Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone. Journal of Applied Microbiology, 2004, 96, 1133-1142.	1.4	96
70	Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Applied and Environmental Microbiology, 1995, 61, 2787-2790.	1.4	95
71	Superdormant Spores of <i>Bacillus</i> Species Have Elevated Wet-Heat Resistance and Temperature Requirements for Heat Activation. Journal of Bacteriology, 2009, 191, 5584-5591.	1.0	94
72	Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 8288-8292.	3.3	92

#	Article	IF	CITATIONS
73	Germination proteins in the inner membrane of dormant <i>Bacillus subtilis</i> spores colocalize in a discrete cluster. Molecular Microbiology, 2011, 81, 1061-1077.	1.2	92
74	Spore Germination and Outgrowth. , 0, , 537-548.		91
75	Small, Acid-Soluble Proteins as Biomarkers in Mass Spectrometry Analysis of Bacillu s Spores. Applied and Environmental Microbiology, 2003, 69, 1100-1107.	1.4	90
76	Levels of Small Molecules and Enzymes in the Mother Cell Compartment and the Forespore of Sporulating Bacillus megaterium. Journal of Bacteriology, 1977, 130, 1130-1138.	1.0	90
77	Identification of a New Gene Essential for Germinationof Bacillus subtilis Spores withCa 2+ -Dipicolinate. Journal of Bacteriology, 2003, 185, 2315-2329.	1.0	88
78	SleC Is Essential for Cortex Peptidoglycan Hydrolysis during Germination of Spores of the Pathogenic Bacterium <i>Clostridium perfringens</i> . Journal of Bacteriology, 2009, 191, 2711-2720.	1.0	88
79	The Effects of Heat Activation on Bacillus Spore Germination, with Nutrients or under High Pressure, with or without Various Germination Proteins. Applied and Environmental Microbiology, 2015, 81, 2927-2938.	1.4	87
80	Dramatic increase in negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis. Journal of Bacteriology, 1990, 172, 7-14.	1.0	85
81	Characterization of Spores of <i>Bacillus subtilis</i> That Lack Most Coat Layers. Journal of Bacteriology, 2008, 190, 6741-6748.	1.0	85
82	The Bacillus subtilis dacB gene, encoding penicillin-binding protein 5*, is part of a three-gene operon required for proper spore cortex synthesis and spore core dehydration. Journal of Bacteriology, 1995, 177, 4721-4729.	1.0	84
83	Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure. Journal of Applied Microbiology, 2007, 102, 65-76.	1.4	84
84	Factors Affecting Variability in Time between Addition of Nutrient Germinants and Rapid Dipicolinic Acid Release during Germination of Spores of <i>Bacillus</i> Species. Journal of Bacteriology, 2010, 192, 3608-3619.	1.0	84
85	Promoter specificity of sigma G-containing RNA polymerase from sporulating cells of Bacillus subtilis: identification of a group of forespore-specific promoters. Journal of Bacteriology, 1989, 171, 2708-2718.	1.0	83
86	DNA in dormant spores of Bacillus species is in an A-like conformation. Molecular Microbiology, 1992, 6, 563-567.	1.2	83
87	Isolation and Characterization of Mutations in <i>Bacillus subtilis</i> That Allow Spore Germination in the Novel Germinant <scp>d</scp> -Alanine. Journal of Bacteriology, 1999, 181, 3341-3350.	1.0	83
88	Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates. Journal of Applied Microbiology, 2007, 103, 691-699.	1.4	82
89	Role of Dipicolinic Acid in the Germination, Stability, and Viability of Spores of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2008, 190, 4798-4807.	1.0	82
90	Protein metabolism during germination of Bacillus megaterium spores. I. Protein synthesis and amino acid metabolism. Journal of Biological Chemistry, 1975, 250, 623-30.	1.6	82

#	Article	IF	CITATIONS
91	Roles of Low-Molecular-Weight Penicillin-Binding Proteins in <i>Bacillus subtilis</i> Spore Peptidoglycan Synthesis and Spore Properties. Journal of Bacteriology, 1999, 181, 126-132.	1.0	81
92	Roles of the Major, Small, Acid-Soluble Spore Proteins and Spore-Specific and Universal DNA Repair Mechanisms in Resistance of <i>Bacillus subtilis</i> Spores to Ionizing Radiation from X Rays and High-Energy Charged-Particle Bombardment. Journal of Bacteriology, 2008, 190, 1134-1140.	1.0	81
93	Characterization of yhcN, a new forespore-specific gene of Bacillus subtilis. Gene, 1998, 212, 179-188.	1.0	79
94	Mechanism of killing of spores of <i>Bacillus cereus</i> and <i>Bacillus megaterium</i> by wet heat. Letters in Applied Microbiology, 2010, 50, 507-514.	1.0	79
95	Dipicolinic Acid Greatly Enhances Production of Spore Photoproduct in Bacterial Spores upon UV Irradiation. Applied and Environmental Microbiology, 1993, 59, 640-643.	1.4	78
96	Biochemical studies of bacterial sporulation and germination. 23. Nucleotide metabolism during spore germination. Journal of Biological Chemistry, 1970, 245, 3645-52.	1.6	78
97	The regulation of transcription of the gerA spore germination operon of Bacillus subtilis. Molecular Microbiology, 1990, 4, 275-282.	1.2	77
98	Characterization of <i>Clostridium perfringens</i> Spores That Lack SpoVA Proteins and Dipicolinic Acid. Journal of Bacteriology, 2008, 190, 4648-4659.	1.0	77
99	Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination. Journal of Bacteriology, 1992, 174, 807-814.	1.0	75
100	The preparation, germination properties and stability of superdormant spores of <i>Bacillus cereus</i> . Journal of Applied Microbiology, 2010, 108, 582-590.	1.4	75
101	Role of GerD in Germination of Bacillus subtilis Spores. Journal of Bacteriology, 2007, 189, 1090-1098.	1.0	74
102	Protein metabolism during germination of Bacillus megaterium spores. I. Protein synthesis and amino acid metabolism. Journal of Biological Chemistry, 1975, 250, 623-630.	1.6	74
103	Characterization of Wet-Heat Inactivation of Single Spores of <i>Bacillus</i> Species by Dual-Trap Raman Spectroscopy and Elastic Light Scattering. Applied and Environmental Microbiology, 2010, 76, 1796-1805.	1.4	73
104	Effects of Mn and Fe Levels on <i>Bacillus subtilis</i> Spore Resistance and Effects of Mn ²⁺ , Other Divalent Cations, Orthophosphate, and Dipicolinic Acid on Protein Resistance to Ionizing Radiation. Applied and Environmental Microbiology, 2011, 77, 32-40.	1.4	73
105	Characterization of Bacterial Spore Germination Using Integrated Phase Contrast Microscopy, Raman Spectroscopy, and Optical Tweezers. Analytical Chemistry, 2010, 82, 3840-3847.	3.2	72
106	Analysis of the action of compounds that inhibit the germination of spores of Bacillus species. Journal of Applied Microbiology, 2004, 96, 725-741.	1.4	71
107	Characterization of the germination of <i>Bacillus megaterium</i> spores lacking enzymes that degrade the spore cortex. Journal of Applied Microbiology, 2009, 107, 318-328.	1.4	71
108	Elastic and Inelastic Light Scattering from Single Bacterial Spores in an Optical Trap Allows the Monitoring of Spore Germination Dynamics. Analytical Chemistry, 2009, 81, 4035-4042.	3.2	71

#	Article	IF	CITATIONS
109	Localization of SpoVAD to the Inner Membrane of Spores of Bacillus subtilis. Journal of Bacteriology, 2005, 187, 5677-5682.	1.0	70
110	Biochemical Studies of Bacterial Sporulation and Germination. Journal of Biological Chemistry, 1970, 245, 3645-3652.	1.6	70
111	Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores. Journal of Bacteriology, 1986, 166, 417-425.	1.0	69
112	Alkyl hydroperoxide reductase, catalase, MrgA, and superoxide dismutase are not involved in resistance of Bacillus subtilis spores to heat or oxidizing agents. Journal of Bacteriology, 1997, 179, 7420-7425.	1.0	69
113	Role of a SpoVA Protein in Dipicolinic Acid Uptake into Developing Spores of Bacillus subtilis. Journal of Bacteriology, 2012, 194, 1875-1884.	1.0	69
114	Effects of Sporulation Conditions on the Germination and Germination Protein Levels of Bacillus subtilis Spores. Applied and Environmental Microbiology, 2012, 78, 2689-2697.	1.4	69
115	Interaction between DNA and alpha/beta-type small, acid-soluble spore proteins: a new class of DNA-binding protein. Journal of Bacteriology, 1992, 174, 2312-2322.	1.0	68
116	Bacillus spore germination: Knowns, unknowns and what we need to learn. Cellular Signalling, 2020, 74, 109729.	1.7	68
117	Investigating the role of small, acid-soluble spore proteins (SASPs) in the resistance of Clostridium perfringens spores to heat. BMC Microbiology, 2006, 6, 50.	1.3	67
118	Resistance of Bacillus subtilis Spore DNA to Lethal Ionizing Radiation Damage Relies Primarily on Spore Core Components and DNA Repair, with Minor Effects of Oxygen Radical Detoxification. Applied and Environmental Microbiology, 2014, 80, 104-109.	1.4	67
119	Formaldehyde kills spores of Bacillus subtilis by DNA damage and small, acid-soluble spore proteins of the alphaalphaalphaalphaalphaalpha/betabetabetabetabetabetabeta-type protect spores against this DNA damage. Journal of Applied Microbiology, 1999, 87, 8-14.	1.4	66
120	Antisense-RNA-Mediated Decreased Synthesis of Small, Acid-Soluble Spore Proteins Leads to Decreased Resistance of Clostridium perfringens Spores to Moist Heat and UV Radiation. Applied and Environmental Microbiology, 2007, 73, 2048-2053.	1.4	66
121	Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 421-423.	3.3	65
122	Effects of Major Spore-Specific DNA Binding Proteins on Bacillus subtilis Sporulation and Spore Properties. Journal of Bacteriology, 2000, 182, 6906-6912.	1.0	64
123	The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates. Microbiology (United Kingdom), 2009, 155, 3464-3472.	0.7	64
124	Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis 168. Journal of Bacteriology, 1991, 173, 4646-4652.	1.0	63
125	Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochemical and Photobiological Sciences, 2005, 4, 591.	1.6	63
126	Binding of DNA in vitro by a small, acid-soluble spore protein from Bacillus subtilis and the effect of this binding on DNA topology. Journal of Bacteriology, 1990, 172, 6900-6906.	1.0	61

#	Article	IF	CITATIONS
127	Purification and properties of a specific proteolytic enzyme present in spores of Bacillus magaterium. Journal of Biological Chemistry, 1976, 251, 7853-62.	1.6	61
128	The internal pH of the forespore compartment of Bacillus megaterium decreases by about 1 pH unit during sporulation. Journal of Bacteriology, 1994, 176, 2252-2258.	1.0	60
129	Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy. Journal of Bacteriology, 2015, 197, 2361-2373.	1.0	60
130	Maturation of Released Spores Is Necessary for Acquisition of Full Spore Heat Resistance during Bacillus subtilis Sporulation. Applied and Environmental Microbiology, 2011, 77, 6746-6754.	1.4	59
131	Mechanism of <i>Bacillus subtilis</i> spore inactivation by and resistance to supercritical CO ₂ plus peracetic acid. Journal of Applied Microbiology, 2016, 120, 57-69.	1.4	59
132	Analysis of the killing of spores of Bacillus subtilis by a new disinfectant, SteriloxR. Journal of Applied Microbiology, 2001, 91, 1051-1058.	1.4	58
133	High Salinity Alters the Germination Behavior of Bacillus subtilis Spores with Nutrient and Nonnutrient Germinants. Applied and Environmental Microbiology, 2014, 80, 1314-1321.	1.4	58
134	Synthesis of a Bacillus subtilis small, acid-soluble spore protein in Escherichia coli causes cell DNA to assume some characteristics of spore DNA. Journal of Bacteriology, 1991, 173, 1642-1653.	1.0	57
135	Transglutaminase-Mediated Cross-Linking of GerQ in the Coats of Bacillus subtilis Spores. Journal of Bacteriology, 2004, 186, 5567-5575.	1.0	57
136	Experimental studies addressing the longevity of Bacillus subtilis spores – The first data from a 500-year experiment. PLoS ONE, 2018, 13, e0208425.	1.1	56
137	Characterization of single heat-activated Bacillus spores using laser tweezers †Raman spectroscopy. Optics Express, 2009, 17, 16480.	1.7	54
138	Germination of spores of Clostridium difficile strains, including isolates from a hospital outbreak of Clostridium difficile-associated disease (CDAD). Microbiology (United Kingdom), 2008, 154, 2241-2250.	0.7	53
139	Monitoring Rates and Heterogeneity of High-Pressure Germination of Bacillus Spores by Phase-Contrast Microscopy of Individual Spores. Applied and Environmental Microbiology, 2014, 80, 345-353.	1.4	52
140	Observations on research with spores of Bacillales and Clostridiales species. Journal of Applied Microbiology, 2019, 126, 348-358.	1.4	52
141	Analysis of Nucleoid Morphology during Germination and Outgrowth of Spores of Bacillus Species. Journal of Bacteriology, 2000, 182, 5556-5562.	1.0	51
142	DNA Damage Kills Bacterial Spores and Cells Exposed to 222-Nanometer UV Radiation. Applied and Environmental Microbiology, 2020, 86, .	1.4	51
143	Analysis of the germination of spores ofBacillus subtiliswith temperature sensitivespomutations in thespoVAoperon. FEMS Microbiology Letters, 2004, 239, 71-77.	0.7	50
144	Effects of modification of membrane lipid composition on <i>Bacillus subtilis</i> sporulation and spore properties. Journal of Applied Microbiology, 2009, 106, 2064-2078.	1.4	50

#	Article	IF	CITATIONS
145	Levels of Germination Proteins in Dormant and Superdormant Spores of Bacillus subtilis. Journal of Bacteriology, 2012, 194, 2221-2227.	1.0	50
146	Photochemistry and Photobiology of the Spore Photoproduct: A 50‥ear Journey. Photochemistry and Photobiology, 2015, 91, 1263-1290.	1.3	50
147	Architecture and Assembly of the Bacillus subtilis Spore Coat. PLoS ONE, 2014, 9, e108560.	1.1	50
148	Roles of DacB and Spm Proteins in <i>Clostridium perfringens</i> Spore Resistance to Moist Heat, Chemicals, and UV Radiation. Applied and Environmental Microbiology, 2008, 74, 3730-3738.	1.4	49
149	Analysis of Metabolism in Dormant Spores of Bacillus Species by ³¹ P Nuclear Magnetic Resonance Analysis of Low-Molecular-Weight Compounds. Journal of Bacteriology, 2015, 197, 992-1001.	1.0	49
150	Killing of spores of Bacillus subtilis by peroxynitrite appears to be caused by membrane damage. Microbiology (United Kingdom), 2002, 148, 307-314.	0.7	49
151	Effects of the Binding of α/β-type Small, Acid-soluble Spore Proteins on the Photochemistry of DNA in Spores of Bacillus subtilis and In Vitro¶. Photochemistry and Photobiology, 2005, 81, 163.	1.3	49
152	The enzymatic activity of phosphoglycerate mutase from gram-positive endospore-forming bacteria requires Mn ²⁺ and is pH sensitive. Canadian Journal of Microbiology, 1998, 44, 759-767.	0.8	48
153	Effects of a gerF (lgt) Mutation on the Germination of Spores of Bacillus subtilis. Journal of Bacteriology, 2004, 186, 2984-2991.	1.0	48
154	Electron microscopic studies of the interaction between a Bacillus subtilis alpha/beta-type small, acid-soluble spore protein with DNA: protein binding is cooperative, stiffens the DNA, and induces negative supercoiling Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 8224-8228.	3.3	47
155	Analysis of the Raman spectra of Ca2+-dipicolinic acid alone and in the bacterial spore core in both aqueous and dehydrated environments. Analyst, The, 2012, 137, 3683.	1.7	47
156	Activity and Regulation of Various Forms of CwlJ, SleB, and YpeB Proteins in Degrading Cortex Peptidoglycan of Spores of Bacillus Species In Vitro and during Spore Germination. Journal of Bacteriology, 2013, 195, 2530-2540.	1.0	47
157	Structural analysis of high pressure treated Bacillus subtilis spores. Innovative Food Science and Emerging Technologies, 2013, 17, 43-53.	2.7	46
158	Proteolytic processing of the protease which initiates degradation of small, acid-soluble proteins during germination of Bacillus subtilis spores. Journal of Bacteriology, 1993, 175, 2568-2577.	1.0	45
159	A cofactor-dependent phosphoglycerate mutase homolog fromBacillus stearothermophilusis actually a broad specificity phosphatase. Protein Science, 2001, 10, 1835-1846.	3.1	45
160	Localization of the Transglutaminase Cross-Linking Sites in the Bacillus subtilis Spore Coat Protein GerQ. Journal of Bacteriology, 2006, 188, 7609-7616.	1.0	45
161	Superdormant Spores of <i>Bacillus</i> Species Germinate Normally with High Pressure, Peptidoglycan Fragments, and Bryostatin. Journal of Bacteriology, 2010, 192, 1455-1458.	1.0	45
162	The enzymatic activity of phosphoglycerate mutase from gram-positive endospore-forming bacteria requires Mn ²⁺ and is pH sensitive. Canadian Journal of Microbiology, 1998, 44, 759-767.	0.8	45

#	Article	IF	CITATIONS
163	Analysis of dye binding by and membrane potential in spores of <i>Bacillus</i> species. Journal of Applied Microbiology, 2009, 106, 814-824.	1.4	44
164	Analysis of damage due to moist heat treatment of spores of <i>Bacillus subtilis</i> . Journal of Applied Microbiology, 2009, 106, 1600-1607.	1.4	44
165	Rapid confocal Raman imaging using a synchro multifoci-scan scheme for dynamic monitoring of single living cells. Applied Physics Letters, 2011, 98, .	1.5	44
166	Kinetics of Germination of Wet-Heat-Treated Individual Spores of Bacillus Species, Monitored by Raman Spectroscopy and Differential Interference Contrast Microscopy. Applied and Environmental Microbiology, 2011, 77, 3368-3379.	1.4	44
167	Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions. Frontiers in Microbiology, 2019, 10, 333.	1.5	44
168	Bioluminescence and spores as biological indicators of inimical processes. Journal of Applied Bacteriology, 1994, 76, 129S-134S.	1.1	43
169	Structure of the DNA-SspC Complex: Implications for DNA Packaging, Protection, and Repair in Bacterial Spores. Journal of Bacteriology, 2004, 186, 3525-3530.	1.0	43
170	Localization of the Germination Protein GerD to the Inner Membrane in Bacillus subtilis Spores. Journal of Bacteriology, 2008, 190, 5635-5641.	1.0	43
171	Role of GerKB in Germination and Outgrowth of <i>Clostridium perfringens</i> Spores. Applied and Environmental Microbiology, 2009, 75, 3813-3817.	1.4	43
172	Combination of Raman tweezers and quantitative differential interference contrast microscopy for measurement of dynamics and heterogeneity during the germination of individual bacterial spores. Journal of Biomedical Optics, 2010, 15, 056010.	1.4	42
173	Monitoring the Kinetics of Uptake of a Nucleic Acid Dye during the Germination of Single Spores of BacillusSpecies. Analytical Chemistry, 2010, 82, 8717-8724.	3.2	42
174	The Clostridium perfringens Germinant Receptor Protein GerKC Is Located in the Spore Inner Membrane and Is Crucial for Spore Germination. Journal of Bacteriology, 2013, 195, 5084-5091.	1.0	42
175	Germination of Individual Bacillus subtilis Spores with Alterations in the GerD and SpoVA Proteins, Which Are Important in Spore Germination. Journal of Bacteriology, 2011, 193, 2301-2311.	1.0	41
176	Numbers of Individual Nutrient Germinant Receptors and Other Germination Proteins in Spores of Bacillus subtilis. Journal of Bacteriology, 2013, 195, 3575-3582.	1.0	41
177	Applications of Bacillus subtilis Spores in Biotechnology and Advanced Materials. Applied and Environmental Microbiology, 2020, 86, .	1.4	41
178	Mechanisms of killing of Bacillus subtilis spores by Decon and OxoneTM, two general decontaminants for biological agents. Journal of Applied Microbiology, 2004, 96, 289-301.	1.4	40
179	Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis. Journal of Applied Microbiology, 2005, 99, 1484-1494.	1.4	40
180	Analysis of the germination of individual Clostridium perfringens spores and its heterogeneity. Journal of Applied Microbiology, 2011, 111, 1212-1223.	1.4	40

#	Article	IF	CITATIONS
181	Effects of Cortex Peptidoglycan Structure and Cortex Hydrolysis on the Kinetics of Ca ²⁺ -Dipicolinic Acid Release during Bacillus subtilis Spore Germination. Journal of Bacteriology, 2012, 194, 646-652.	1.0	40
182	Germination Protein Levels and Rates of Germination of Spores of Bacillus subtilis with Overexpressed or Deleted Genes Encoding Germination Proteins. Journal of Bacteriology, 2012, 194, 3156-3164.	1.0	40
183	Topology and Accessibility of Germination Proteins in the Bacillus subtilis Spore Inner Membrane. Journal of Bacteriology, 2013, 195, 1484-1491.	1.0	40
184	In Vitro and In Vivo Oxidation of Methionine Residues in Small, Acid-Soluble Spore Proteins from <i>Bacillus</i> Species. Journal of Bacteriology, 1998, 180, 2694-2700.	1.0	40
185	Analysis of the expression and regulation of the gerB spore germination operon of Bacillus subtilis 168. Microbiology (United Kingdom), 1994, 140, 3079-3083.	0.7	39
186	Plasma Sterilization: Opportunities and Microbial Assessment Strategies in Medical Device Manufacturing. IEEE Transactions on Plasma Science, 2010, 38, 973-981.	0.6	39
187	Use of Raman Spectroscopy and Phase-Contrast Microscopy To Characterize Cold Atmospheric Plasma Inactivation of Individual Bacterial Spores. Applied and Environmental Microbiology, 2016, 82, 5775-5784.	1.4	39
188	Interaction between Individual Protein Components of the GerA and GerB Nutrient Receptors That Trigger Germination of Bacillus subtilis Spores. Journal of Bacteriology, 2005, 187, 2513-2518.	1.0	38
189	Interaction of Apurinic/Apyrimidinic Endonucleases Nfo and ExoA with the DNA Integrity Scanning Protein DisA in the Processing of Oxidative DNA Damage during Bacillus subtilis Spore Outgrowth. Journal of Bacteriology, 2014, 196, 568-578.	1.0	38
190	Identification of Several Unique, Low-Molecular-Weight Basic Proteins in Dormant Spores of Clostridium bifermentans and Their Degradation During Spore Germination. Journal of Bacteriology, 1976, 127, 1015-1017.	1.0	38
191	Heat inactivation of Bacillus subtilis spores lacking small, acid-soluble spore proteins is accompanied by generation of abasic sites in spore DNA. Journal of Bacteriology, 1994, 176, 2111-2113.	1.0	37
192	Penicillin-Binding Protein-Related Factor A Is Required for Proper Chromosome Segregation in Bacillus subtilis. Journal of Bacteriology, 2000, 182, 1650-1658.	1.0	37
193	Base-change mutations induced by various treatments of Bacillus subtilis spores with and without DNA protective small, acid-soluble spore proteins. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 503, 77-84.	0.4	37
194	Analysis of interactions between nutrient germinant receptors and SpoVA proteins ofBacillus subtilisspores. FEMS Microbiology Letters, 2007, 274, 42-47.	0.7	37
195	High pressure germination of <i>Bacillus subtilis</i> spores with alterations in levels and types of germination proteins. Journal of Applied Microbiology, 2014, 117, 711-720.	1.4	37
196	Mechanism of killing of spores of <i>Bacillus anthracis</i> in a high-temperature gas environment, and analysis of DNA damage generated by various decontamination treatments of spores of <i>Bacillus anthracis</i> , <i>Bacillus subtilis</i> and <i>Bacillus thuringiensis</i> . Journal of Applied Microbiology, 2014, 116, 805-814.	1.4	37
197	Improvement of Biological Indicators by Uniformly Distributing Bacillus subtilis Spores in Monolayers To Evaluate Enhanced Spore Decontamination Technologies. Applied and Environmental Microbiology, 2016, 82, 2031-2038.	1.4	37
198	A <i>Clostridium difficile</i> -Specific, Gel-Forming Protein Required for Optimal Spore Germination. MBio, 2017, 8, .	1.8	37

#	Article	IF	CITATIONS
199	New Small, Acid-Soluble Proteins Unique to Spores of Bacillus subtilis : Identification of the Coding Genes and Regulation and Function of Two of These Genes. Journal of Bacteriology, 1998, 180, 6704-6712.	1.0	37
200	Studies of the processing of the protease which initiates degradation of small, acid-soluble proteins during germination of spores of Bacillus species. Journal of Bacteriology, 1994, 176, 2788-2795.	1.0	36
201	Release of Small Molecules during Germination of Spores of <i>Bacillus</i> Species. Journal of Bacteriology, 2008, 190, 4759-4763.	1.0	36
202	Slow Leakage of Ca-Dipicolinic Acid from Individual Bacillus Spores during Initiation of Spore Germination. Journal of Bacteriology, 2015, 197, 1095-1103.	1.0	36
203	Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from being killed by freeze-drying. Applied and Environmental Microbiology, 1994, 60, 2647-2649.	1.4	36
204	Autoprocessing of the protease that degrades small, acid-soluble proteins of spores of Bacillus species is triggered by low pH, dehydration, and dipicolinic acid. Journal of Bacteriology, 1994, 176, 7032-7037.	1.0	35
205	Effects of Autoclaving on Bacterial Endospores Studied by Fourier Transform Infrared Microspectroscopy. Applied Spectroscopy, 2004, 58, 749-753.	1.2	35
206	Role of the Nfo and ExoA Apurinic/Apyrimidinic Endonucleases in Repair of DNA Damage during Outgrowth of <i>Bacillus subtilis</i> Spores. Journal of Bacteriology, 2008, 190, 2031-2038.	1.0	35
207	Analysis of the Effects of a <i>gerP</i> Mutation on the Germination of Spores of Bacillus subtilis. Journal of Bacteriology, 2012, 194, 5749-5758.	1.0	35
208	Mobility of Core Water in Bacillus subtilis Spores by 2H NMR. Biophysical Journal, 2013, 105, 2016-2023.	0.2	35
209	Function of the SpoVAEa and SpoVAF Proteins of Bacillus subtilis Spores. Journal of Bacteriology, 2014, 196, 2077-2088.	1.0	35
210	Water and Small-Molecule Permeation of Dormant Bacillus subtilis Spores. Journal of Bacteriology, 2016, 198, 168-177.	1.0	35
211	Cloning and nucleotide sequencing of genes for small, acid-soluble spore proteins of Bacillus cereus, Bacillus stearothermophilus, and "Thermoactinomyces thalpophilus". Journal of Bacteriology, 1986, 167, 168-173.	1.0	34
212	Analysis of Outgrowth of Bacillus subtilis Spores Lacking Penicillin-Binding Protein 2a. Journal of Bacteriology, 1998, 180, 6493-6502.	1.0	34
213	Effects of Mn levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide. Journal of Applied Microbiology, 2011, 111, 663-670.	1.4	33
214	Crystal Structure of the Catalytic Domain of the Bacillus cereus SleB Protein, Important in Cortex Peptidoglycan Degradation during Spore Germination. Journal of Bacteriology, 2012, 194, 4537-4545.	1.0	33
215	Role of the Nfo (YqfS) and ExoA Apurinic/Apyrimidinic Endonucleases in Protecting Bacillus subtilis Spores from DNA Damage. Journal of Bacteriology, 2005, 187, 7374-7381.	1.0	32
216	Characterization of Amorphous Solids with Weak Glass Transitions Using High Ramp Rate Differential Scanning Calorimetry. Journal of Pharmaceutical Sciences, 2008, 97, 1013-1024.	1.6	32

#	Article	IF	CITATIONS
217	Effects of the SpoVT Regulatory Protein on the Germination and Germination Protein Levels of Spores of Bacillus subtilis. Journal of Bacteriology, 2012, 194, 3417-3425.	1.0	32
218	Spore Resistance Properties. , 0, , 201-215.		32
219	Changes in Bacillus Spore Small Molecules, rRNA, Germination, and Outgrowth after Extended Sublethal Exposure to Various Temperatures: Evidence that Protein Synthesis Is Not Essential for Spore Germination. Journal of Bacteriology, 2016, 198, 3254-3264.	1.0	32
220	Effects of High-Pressure Treatment on Spores of Clostridium Species. Applied and Environmental Microbiology, 2016, 82, 5287-5297.	1.4	32
221	Effects of wet heat treatment on the germination of individual spores of Clostridium perfringens. Journal of Applied Microbiology, 2012, 113, 824-836.	1.4	31
222	In vivo and in vitro synthesis of the spore-specific proteins A and C of bacillus megaterium. Journal of Biological Chemistry, 1980, 255, 8417-23.	1.6	31
223	Studies on the mechanisms of the sporicidal action of ortho-phthalaldehyde. Journal of Applied Microbiology, 2002, 92, 675-680.	1.4	30
224	Monitoring the Wet-Heat Inactivation Dynamics of Single Spores of Bacillus Species by Using Raman Tweezers, Differential Interference Contrast Microscopy, and Nucleic Acid Dye Fluorescence Microscopy. Applied and Environmental Microbiology, 2011, 77, 4754-4769.	1.4	30
225	Morphogenesis and Properties of the Bacterial Spore. , 2014, , 191-218.		30
226	Analysis of the Loss in Heat and Acid Resistance during Germination of Spores of Bacillus Species. Journal of Bacteriology, 2014, 196, 1733-1740.	1.0	30
227	Role of DNA Repair and Protective Components in Bacillus subtilis Spore Resistance to Inactivation by 400-nm-Wavelength Blue Light. Applied and Environmental Microbiology, 2018, 84, .	1.4	30
228	Spores and Their Significance. , 0, , 23-63.		30
229	Manganese(II) Activation of 3-Phosphoglycerate Mutase of Bacillus megaterium: pH-Sensitive Interconversion of Active and Inactive Forms. Archives of Biochemistry and Biophysics, 1993, 306, 342-349.	1.4	29
230	Analysis of the slow germination of multiple individual superdormant Bacillus subtilis spores using multifocus Raman microspectroscopy and differential interference contrast microscopy. Journal of Applied Microbiology, 2012, 112, 526-536.	1.4	29
231	Growth, osmotic downshock resistance and differentiation of Bacillus subtilis strains lacking mechanosensitive channels. Archives of Microbiology, 2007, 189, 49-58.	1.0	28
232	Multifocus confocal Raman microspectroscopy for rapid single-particle analysis. Journal of Biomedical Optics, 2011, 16, 120503.	1.4	28
233	Polyamine Levels During Growth, Sporulation, and Spore Germination of Bacillus megaterium. Journal of Bacteriology, 1974, 117, 1171-1177.	1.0	28
234	Bacillus megaterium spore protease. Synthesis and processing of precursor forms during sporulation and germination. Journal of Biological Chemistry, 1982, 257, 10838-45.	1.6	28

#	Article	IF	CITATIONS
235	Binding to DNA protects alpha/beta-type, small, acid-soluble spore proteins of Bacillus and Clostridium species against digestion by their specific protease as well as by other proteases. Journal of Bacteriology, 1995, 177, 4149-4151.	1.0	27
236	Small, Acid-Soluble Spore Proteins of the α/β Type Do Not Protect the DNA in <i>Bacillus subtilis</i> Spores against Base Alkylation. Applied and Environmental Microbiology, 1998, 64, 1958-1962.	1.4	27
237	The Bacillus subtilis HBsu Protein Modifies the Effects of α∫β-Type, Small Acid-Soluble Spore Proteins on DNA. Journal of Bacteriology, 2000, 182, 1942-1948.	1.0	27
238	An α/β-Type, Small, Acid-Soluble Spore Protein Which Has Very High Affinity for DNA Prevents Outgrowth of Bacillus subtilis Spores. Journal of Bacteriology, 2001, 183, 2662-2666.	1.0	27
239	Identification of aryl-phospho-?-d-glucosidases in Bacillus subtilis. Archives of Microbiology, 2004, 181, 60-67.	1.0	27
240	Fourier Transform Infrared Reflectance Microspectroscopy Study of Bacillus Subtilis Engineered without Dipicolinic Acid: The Contribution of Calcium Dipicolinate to the Mid-Infrared Absorbance of Bacillus Subtilis Endospores. Applied Spectroscopy, 2005, 59, 893-896.	1.2	27
241	Synergism between Different Germinant Receptors in the Germination of Bacillus subtilis Spores. Journal of Bacteriology, 2011, 193, 4664-4671.	1.0	27
242	Analysis of the germination kinetics of individual <i>Bacillus subtilis</i> spores treated with hydrogen peroxide or sodium hypochlorite. Letters in Applied Microbiology, 2013, 57, 259-265.	1.0	27
243	Identification of New Proteins That Modulate the Germination of Spores of Bacillus Species. Journal of Bacteriology, 2013, 195, 3009-3021.	1.0	27
244	Assessing the activity of microbicides against bacterial spores: knowledge and pitfalls. Journal of Applied Microbiology, 2016, 120, 1174-1180.	1.4	27
245	Bacillus megaterium spore protease: purification, radioimmunoassay, and analysis of antigen level and localization during growth, sporulation, and spore germination. Journal of Bacteriology, 1982, 150, 303-311.	1.0	27
246	Cooperative Manganese(II) Activation of 3-Phosphoglycerate Mutase of Bacillus megaterium: A Biological pH-Sensing Mechanism in Bacterial Spore Formation and Germination. Archives of Biochemistry and Biophysics, 1995, 320, 35-42.	1.4	26
247	Killing bacterial spores by organic hydroperoxides. Journal of Industrial Microbiology and Biotechnology, 1997, 18, 384-388.	1.4	26
248	In vivo and in vitro synthesis of the spore-specific proteins A and C of bacillus megaterium Journal of Biological Chemistry, 1980, 255, 8417-8423.	1.6	26
249	Absence of 3′-Terminal Residues from Transfer Ribonucleic Acid of Dormant Spores of Bacillus megaterium. Journal of Bacteriology, 1974, 117, 126-132.	1.0	26
250	Properties of Bacillus subtilis small, acid-soluble spore proteins with changes in the sequence recognized by their specific protease. Journal of Bacteriology, 1994, 176, 5357-5363.	1.0	25
251	Analysis of deamidation of small, acid-soluble spore proteins from Bacillus subtilis in vitro and in vivo. Journal of Bacteriology, 1997, 179, 6020-6027.	1.0	25
252	Expression Level of Bacillus subtilis Germinant Receptors Determines the Average Rate but Not the Heterogeneity of Spore Germination. Journal of Bacteriology, 2013, 195, 1735-1740.	1.0	25

#	Article	IF	CITATIONS
253	Effects of steam autoclave treatment on <i>Geobacillus stearothermophilus</i> spores. Journal of Applied Microbiology, 2016, 121, 1300-1311.	1.4	25
254	Intracellular membranes of bacterial endospores are reservoirs for spore core membrane expansion during spore germination. Scientific Reports, 2018, 8, 11388.	1.6	25
255	Spore Structural Proteins. , 0, , 801-809.		25
256	GerO, a Putative Na ⁺ /H ⁺ -K ⁺ Antiporter, Is Essential for Normal Germination of Spores of the Pathogenic Bacterium <i>Clostridium perfringens</i> . Journal of Bacteriology, 2009, 191, 3822-3831.	1.0	24
257	Integrative Analysis of Proteome and Transcriptome Dynamics during Bacillus subtilis Spore Revival. MSphere, 2020, 5, .	1.3	24
258	Purification and amino acid sequence of two small, acid-soluble proteins from Clostridium bifermentans spores. FEMS Microbiology Letters, 1989, 52, 139-43.	0.7	24
259	UV Photochemistry of DNAIn Vitroand inBacillus subtilisSpores at Earth-Ambient and Low Atmospheric Pressure: Implications for Spore Survival on Other Planets or Moons in the Solar System. Astrobiology, 2002, 2, 417-425.	1.5	23
260	Crystal Structure of the GerBC Component of a Bacillus subtilis Spore Germinant Receptor. Journal of Molecular Biology, 2010, 402, 8-16.	2.0	23
261	Alternative Excision Repair of Ultraviolet B- and C-Induced DNA Damage in Dormant and Developing Spores of Bacillus subtilis. Journal of Bacteriology, 2012, 194, 6096-6104.	1.0	23
262	Structure and Mechanism of Action of the Protease That Degrades Small, Acid-Soluble Spore Proteins during Germination of Spores of Bacillus Species. Journal of Bacteriology, 1998, 180, 5077-5084.	1.0	23
263	Protection of DNA by α/β-Type Small, Acid-Soluble Proteins from Bacillus subtilis Spores Against Cytosine Deamination. Biochemistry, 2002, 41, 11325-11330.	1.2	22
264	Dormant Spores Receive an Unexpected Wake-up Call. Cell, 2008, 135, 410-412.	13.5	22
265	Effects of lowering water activity by various humectants on germination of spores of Bacillus species with different germinants. Food Microbiology, 2018, 72, 112-127.	2.1	22
266	What's new and notable in bacterial spore killing!. World Journal of Microbiology and Biotechnology, 2021, 37, 144.	1.7	22
267	Spores and Their Significance. , 0, , 45-79.		22
268	Levels of small molecules in dormant spores of Sporosarcina species and comparison with levels in spores of Bacillus and Clostridium species. Canadian Journal of Microbiology, 1993, 39, 259-262.	0.8	21
269	Regulation of four genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene, 1999, 232, 1-10.	1.0	21
270	Killing of Bacillus subtilis Spores by a Modified Fenton Reagent Containing CuCl 2 and Ascorbic Acid. Applied and Environmental Microbiology, 2004, 70, 2535-2539.	1.4	21

#	Article	IF	CITATIONS
271	Protozoal Digestion of Coat-Defective <i>Bacillus subtilis</i> Spores Produces "Rinds―Composed of Insoluble Coat Protein. Applied and Environmental Microbiology, 2008, 74, 5875-5881.	1.4	21
272	Structure-Based Functional Studies of the Effects of Amino Acid Substitutions in GerBC, the C Subunit of the Bacillus subtilis GerB Spore Germinant Receptor. Journal of Bacteriology, 2011, 193, 4143-4152.	1.0	21
273	Direct Analysis of Water Content and Movement in Single Dormant Bacterial Spores Using Confocal Raman Microspectroscopy and Raman Imaging. Analytical Chemistry, 2013, 85, 7094-7101.	3.2	21
274	Structural and Functional Analysis of the GerD Spore Germination Protein of Bacillus Species. Journal of Molecular Biology, 2014, 426, 1995-2008.	2.0	21
275	Monitoring of Commitment, Blocking, and Continuation of Nutrient Germination of Individual Bacillus subtilis Spores. Journal of Bacteriology, 2014, 196, 2443-2454.	1.0	21
276	Location and stoichiometry of the protease CspB and the cortex-lytic enzyme SleC in Clostridium perfringens spores. Food Microbiology, 2015, 50, 83-87.	2.1	21
277	Analysis of the Germination of Individual Clostridium sporogenes Spores with and without Germinant Receptors and Cortex-Lytic Enzymes. Frontiers in Microbiology, 2017, 8, 2047.	1.5	21
278	Properties of Aged Spores of Bacillus subtilis. Journal of Bacteriology, 2019, 201, .	1.0	21
279	Spore Peptidoglycan Structure in a <i>cwlD dacB</i> Double Mutant of <i>Bacillus subtilis</i> . Journal of Bacteriology, 1999, 181, 6205-6209.	1.0	21
280	Equilibrium and Kinetic Binding Interactions between DNA and a Group of Novel, Nonspecific DNA-binding Proteins from Spores ofBacillus and Clostridium Species. Journal of Biological Chemistry, 2000, 275, 35040-35050.	1.6	20
281	Heat Shock Proteins Do Not Influence Wet Heat Resistance of Bacillus subtilis Spores. Journal of Bacteriology, 2001, 183, 779-784.	1.0	20
282	Site-Directed Mutagenesis and Structural Studies Suggest that the Germination Protease, GPR, in Spores of Bacillus Species Is an Atypical Aspartic Acid Protease. Journal of Bacteriology, 2005, 187, 7119-7125.	1.0	20
283	Effect of radioprotective agents in sporulation medium on Bacillus subtilis spore resistance to hydrogen peroxide, wet heat and germicidal and environmentally relevant UV radiation. Journal of Applied Microbiology, 2011, 110, 1485-1494.	1.4	20
284	Analysis of killing of growing cells and dormant and germinated spores of Bacillus species by black silicon nanopillars. Scientific Reports, 2017, 7, 17768.	1.6	20
285	Percent Charging of Transfer Ribonucleic Acid and Levels of ppGpp and pppGpp in Dormant and Germinated Spores of Bacillus megaterium. Journal of Bacteriology, 1974, 118, 1067-1074.	1.0	20
286	Production of large amounts of acetate during germination of Bacillus megaterium spores in the absence of exogenous carbon sources. Journal of Bacteriology, 1977, 132, 744-746.	1.0	20
287	Crystal structure of a novel germination protease from spores of Bacillus megaterium: structural arrangement and zymogen activation. Journal of Molecular Biology, 2000, 300, 1-10.	2.0	19
288	Analysis of the regulation and function of five genes encoding small, acid-soluble spore proteins of Bacillus subtilis. Gene, 2000, 248, 169-181.	1.0	19

#	Article	IF	CITATIONS
289	Dynamics of the assembly of a complex macromolecular structure – the coat of spores of the bacterium <i>Bacillus subtilis</i> . Molecular Microbiology, 2012, 83, 241-244.	1.2	19
290	Memory of Germinant Stimuli in Bacterial Spores. MBio, 2015, 6, e01859-15.	1.8	19
291	Uptake and levels of the antibiotic berberine in individual dormant and germinating <i>Clostridium difficile</i> and <i>Bacillus cereus</i> spores as measured by laser tweezers Raman spectroscopy. Journal of Antimicrobial Chemotherapy, 2016, 71, 1540-1546.	1.3	19
292	Mechanisms of enhanced bacterial endospore inactivation during sterilization by ohmic heating. Bioelectrochemistry, 2019, 130, 107338.	2.4	19
293	Kinetics of Germination of Individual Spores of Geobacillus stearothermophilus as Measured by Raman Spectroscopy and Differential Interference Contrast Microscopy. PLoS ONE, 2013, 8, e74987.	1.1	19
294	Thermo-structural studies of spores subjected to high temperature gas environments. International Journal of Heat and Mass Transfer, 2011, 54, 755-765.	2.5	18
295	Efficient Inhibition of Germination of Coat-Deficient Bacterial Spores by Multivalent Metal Cations, Including Terbium (Tb ³⁺). Applied and Environmental Microbiology, 2011, 77, 5536-5539.	1.4	18
296	Killing the spores of <i>Bacillus</i> species by molecular iodine. Journal of Applied Microbiology, 2017, 122, 54-64.	1.4	18
297	Analysis of the mRNAs in Spores of Bacillus subtilis. Journal of Bacteriology, 2019, 201, .	1.0	18
298	Killing of bacterial spores by dodecylamine and its effects on spore inner membrane properties. Journal of Applied Microbiology, 2020, 129, 1511-1522.	1.4	18
299	Studies on the mechanism of the osmoresistance of spores of Bacillus subtilis. Journal of Applied Microbiology, 2003, 95, 167-179.	1.4	17
300	A novel <scp>RNA</scp> polymeraseâ€binding protein controlling genes involved in spore germination in <i><scp>B</scp>acillus subtilis</i> . Molecular Microbiology, 2013, 89, 113-122.	1.2	17
301	A live-cell super-resolution technique demonstrated by imaging germinosomes in wild-type bacterial spores. Scientific Reports, 2020, 10, 5312.	1.6	17
302	Unlocking the Sporicidal Potential of Ethanol: Induced Sporicidal Activity of Ethanol against Clostridium difficile and Bacillus Spores under Altered Physical and Chemical Conditions. PLoS ONE, 2015, 10, e0132805.	1.1	17
303	N-terminal Amino Acid Residues Mediate Protein-Protein Interactions between DNA-bound α/β-Type Small, Acid-soluble Spore Proteins from Bacillus Species. Journal of Biological Chemistry, 2001, 276, 2267-2275.	1.6	16
304	Levels of Glycine Betaine in Growing Cells and Spores of Bacillus Species and Lack of Effect of Glycine Betaine on Dormant Spore Resistance. Journal of Bacteriology, 2006, 188, 3153-3158.	1.0	16
305	Effect of a Small, Acid-Soluble Spore Protein from Clostridium perfringens on the Resistance Properties of Bacillus subtilis Spores. Journal of Bacteriology, 2007, 189, 7927-7931.	1.0	16
306	Observation of the dynamic germination of single bacterial spores using rapid Raman imaging. Journal of Biomedical Optics, 2013, 19, 011003.	1.4	16

#	Article	IF	CITATIONS
307	Engineering Bacillus subtilis as a Versatile and Stable Platform for Production of Nanobodies. Applied and Environmental Microbiology, 2020, 86, .	1.4	16
308	Mutation and killing of Escherichia coli expressing a cloned Bacillus subtilis gene whose product alters DNA conformation. Journal of Bacteriology, 1992, 174, 2943-2950.	1.0	15
309	Transcription of the Bacillus subtilis gerK Operon, Which Encodes a Spore Germinant Receptor, and Comparison with That of Operons Encoding Other Germinant Receptors. Journal of Bacteriology, 2006, 188, 4131-4136.	1.0	15
310	Levels and localization of mechanosensitive channel proteins in Bacillus subtilis. Archives of Microbiology, 2009, 191, 403-414.	1.0	15
311	Extremely Variable Conservation of Â-Type Small, Acid-Soluble Proteins from Spores of Some Species in the Bacterial Order Bacillales. Journal of Bacteriology, 2011, 193, 1884-1892.	1.0	15
312	Role of the Nfo and ExoA Apurinic/Apyrimidinic Endonucleases in Radiation Resistance and Radiation-Induced Mutagenesis of Bacillus subtilis Spores. Journal of Bacteriology, 2011, 193, 2875-2879.	1.0	15
313	Quantitative Analysis of Spatial-Temporal Correlations during Germination of Spores of Bacillus Species. Journal of Bacteriology, 2011, 193, 3765-3772.	1.0	15
314	Fighting Ebola with novel spore decontamination technologies for the military. Frontiers in Microbiology, 2015, 6, 663.	1.5	15
315	Analysis of the Dynamics of a Bacillus subtilis Spore Germination Protein Complex during Spore Germination and Outgrowth. Journal of Bacteriology, 2015, 197, 252-261.	1.0	15
316	Deposition of Bacteria and Bacterial Spores by Bathroom Hot-Air Hand Dryers. Applied and Environmental Microbiology, 2018, 84, .	1.4	15
317	The synthesis and role of the mechanosensitive channel of large conductance in growth and differentiation of Bacillus subtilis. Archives of Microbiology, 2006, 186, 377-383.	1.0	14
318	A Quasi-chemical Model for Bacterial Spore Germination Kinetics by High Pressure. Food Engineering Reviews, 2017, 9, 122-142.	3.1	14
319	Structural and functional analyses of the N-terminal domain of the A subunit of a <i>Bacillus megaterium</i> spore germinant receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11470-11479.	3.3	14
320	Effects of the binding of α/β-type small, acid-soluble spore proteins on the photochemistry of DNA in spores of Bacillus subtilis and in vitro. Photochemistry and Photobiology, 2004, 81, 163-9.	1.3	14
321	Small, acid-soluble, spore proteins and their genes from two species ofSporosarcina. FEMS Microbiology Letters, 1990, 72, 293-297.	0.7	13
322	Germination, Outgrowth, and Vegetative-Growth Kinetics of Dry-Heat-Treated Individual Spores of Bacillus Species. Applied and Environmental Microbiology, 2018, 84, .	1.4	13
323	Bacterial Spore mRNA – What's Up With That?. Frontiers in Microbiology, 2020, 11, 596092.	1.5	13
324	Molecular Physiological Characterization of a High Heat Resistant Spore Forming Bacillus subtilis Food Isolate. Microorganisms, 2021, 9, 667.	1.6	13

#	Article	IF	CITATIONS
325	The RecA-Dependent SOS Response Is Active and Required for Processing of DNA Damage during Bacillus subtilis Sporulation. PLoS ONE, 2016, 11, e0150348.	1.1	13
326	Mechanisms and Applications of Bacterial Sporulation and Germination in the Intestine. International Journal of Molecular Sciences, 2022, 23, 3405.	1.8	13
327	Effects of Carboxy-Terminal Modifications and pH on Binding of a Bacillus subtilis Small, Acid-Soluble Spore Protein to DNA. Journal of Bacteriology, 2003, 185, 6095-6103.	1.0	12
328	Killing of spores of <i>Bacillus</i> species by cetyltrimethylammonium bromide. Journal of Applied Microbiology, 2019, 126, 1391-1401.	1.4	12
329	Visualization of Germination Proteins in Putative Bacillus cereus Germinosomes. International Journal of Molecular Sciences, 2020, 21, 5198.	1.8	12
330	Spermidine Biosynthesis During Germination and Subsequent Vegetative Growth of Bacillus megaterium Spores. Journal of Bacteriology, 1974, 120, 311-315.	1.0	12
331	Heat Activation and Inactivation of Bacterial Spores: Is There an Overlap?. Applied and Environmental Microbiology, 2022, 88, aem0232421.	1.4	12
332	Lack of a significant role for the PerR regulator inBacillus subtilisspore resistance. FEMS Microbiology Letters, 2000, 188, 203-208.	0.7	11
333	Studies of the release of small molecules during pressure germination of spores of Bacillus subtilis. Letters in Applied Microbiology, 2007, 45, 342-348.	1.0	11
334	Effects of moderately high pressure plus heat on the germination and inactivation of <i>Bacillus cereus</i> spores lacking proteins involved in germination. Letters in Applied Microbiology, 2009, 49, 646-651.	1.0	11
335	Effects of forespore-specific overexpression of apurinic/apyrimidinic endonuclease Nfo on the DNA-damage resistance properties of Bacillus subtilis spores. FEMS Microbiology Letters, 2010, 302, 159-165.	0.7	11
336	Isolation and characterization of <i>Bacillus subtilis</i> spores that are superdormant for germination with dodecylamine or Ca ²⁺ -dipicolinic acid. Journal of Applied Microbiology, 2013, 114, 1109-1119.	1.4	11
337	Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments. Applied and Environmental Microbiology, 2015, 81, 6725-6735.	1.4	11
338	Mechanism of inactivation of Bacillus subtilis spores by high pressure CO2 at high temperature. Food Microbiology, 2019, 82, 36-45.	2.1	11
339	Most of the propeptide is dispensable for stability and autoprocessing of the zymogen of the germination protease of spores of Bacillus species. Journal of Bacteriology, 1997, 179, 1824-1827.	1.0	10
340	Mechanisms of Bacillus subtilis spore killing by and resistance to an acidic Fe3+-EDTA-iodide-ethanol formulation. Journal of Applied Microbiology, 2006, 100, 746-753.	1.4	10
341	A conserved <scp>ClpP</scp> â€like protease involved in spore outgrowth in <i><scp>B</scp>acillus subtilis</i> . Molecular Microbiology, 2013, 90, 160-166.	1.2	10

#	Article	IF	CITATIONS
343	Aag Hypoxanthine-DNA Glycosylase Is Synthesized in the Forespore Compartment and Involved in Counteracting the Genotoxic and Mutagenic Effects of Hypoxanthine and Alkylated Bases in DNA during Bacillus subtilis Sporulation. Journal of Bacteriology, 2016, 198, 3345-3354.	1.0	10
344	A Cumulative Spore Killing Approach: Synergistic Sporicidal Activity of Dilute Peracetic Acid and Ethanol at Low pH Against Clostridium difficile and Bacillus subtilis Spores. Open Forum Infectious Diseases, 2016, 3, ofv206.	0.4	10
345	Transcriptional coupling (Mfd) and <scp>DNA</scp> damage scanning (DisA) coordinate excision repair events for efficient <i>Bacillus subtilis</i> spore outgrowth. MicrobiologyOpen, 2018, 7, e00593.	1.2	10
346	Visualization of Germinosomes and the Inner Membrane in Bacillus subtilis Spores. Journal of Visualized Experiments, 2019, , .	0.2	10
347	Properties of spores of Bacillus subtilis with or without a transposon that decreases spore germination and increases spore wet heat resistance. Journal of Applied Microbiology, 2021, 131, 2918-2928.	1.4	10
348	Synthesis and characterization of a 29-amino acid residue DNA-binding peptide derived from α/β-type small, acid-soluble spore proteins (SASP) of bacteria. FEBS Letters, 1992, 305, 115-120.	1.3	9
349	Identification of Protein-Protein Contacts between α/β-Type Small, Acid-soluble Spore Proteins of Bacillus Species Bound to DNA. Journal of Biological Chemistry, 1998, 273, 17326-17332.	1.6	9
350	Mechanisms of killing of spores of Bacillus subtilis by dimethyldioxirane. Journal of Applied Microbiology, 2006, 101, 1161-1168.	1.4	9
351	<i>Bacillus</i> spore wet heat resistance and evidence for the role of an expanded osmoregulatory spore cortex. Letters in Applied Microbiology, 2016, 63, 247-253.	1.0	9
352	An improved protocol for harvesting Bacillus subtilis colony biofilms. Journal of Microbiological Methods, 2017, 134, 7-13.	0.7	9
353	Single-cell analysis reveals individual spore responses to simulated space vacuum. Npj Microgravity, 2018, 4, 26.	1.9	9
354	Identification of Native Cross-Links in <i>Bacillus subtilis</i> Spore Coat Proteins. Journal of Proteome Research, 2021, 20, 1809-1816.	1.8	9
355	Cloning and nucleotide sequence of three genes coding for small, acid-soluble proteins of Clostridium perfringens spores. FEMS Microbiology Letters, 1991, 61, 127-31.	0.7	9
356	Levels of L-malate and other low molecular weight metabolites in spores of Bacillus species and Clostridium difficile. PLoS ONE, 2017, 12, e0182656.	1.1	9
357	Bacillus megaterium spore protease. Action of the enzyme on peptides containing the amino acid sequence cleaved by the enzyme in vivo. Journal of Biological Chemistry, 1980, 255, 8408-12.	1.6	9
358	The effect of hypochlorite on spores of Bacillus subtilis lacking small acid-soluble proteins. Letters in Applied Microbiology, 1996, 22, 405-407.	1.0	8
359	Resistance of Bacterial Spores to Chemical Agents. , 2012, , 121-130.		8
360	Uptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Bacillus Spores as Monitored by Laser Tweezers Raman Spectroscopy. PLoS ONE, 2015, 10, e0144183.	1.1	8

#	Article	IF	CITATIONS
361	High Resolution Analysis of Proteome Dynamics during Bacillus subtilis Sporulation. International Journal of Molecular Sciences, 2021, 22, 9345.	1.8	8
362	Characterization of germinants and their receptors for spores of non-food-borne Clostridium perfringens strain F4969. Microbiology (United Kingdom), 2016, 162, 1972-1983.	0.7	8
363	Biochemical properties of Clostridium bifermentans spores. Journal of Bacteriology, 1977, 129, 1148-1150.	1.0	8
364	Resistance properties and the role of the inner membrane and coat of Bacillus subtilis spores with extreme wet heat resistance. Journal of Applied Microbiology, 2022, 132, 2157-2166.	1.4	8
365	Mechanism of the hydrolysis of 4-methylumbelliferyl-beta-d-glucoside by germinating and outgrowing spores of Bacillus species. Journal of Applied Microbiology, 2004, 96, 1245-1255.	1.4	7
366	Crystallization and preliminary X-ray analysis of the complex between aBacillus subtilisα/β-type small acid-soluble spore protein and DNA. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 503-506.	0.7	7
367	Sensitization of Bacillus subtilis spores to dry heat and desiccation by pretreatment with oxidizing agents. Letters in Applied Microbiology, 2008, 46, 492-497.	1.0	7
368	Analysis of <i>α</i> -glucosidase enzyme activity used in a rapid test for steam sterilization assurance. Journal of Applied Microbiology, 2016, 120, 1326-1335.	1.4	7
369	Accumulation and Release of Rare Earth Ions by Spores of <i>Bacillus</i> Species and the Location of These Ions in Spores. Applied and Environmental Microbiology, 2019, 85, .	1.4	7
370	Killing of spores of Bacillus subtilis by tert-butyl hydroperoxide plus a TAML�activator. Journal of Applied Microbiology, 2006, 102, 061120055200051-???.	1.4	6
371	Effects of the Binding of α/βâ€type Small, Acidâ€soluble Spore Proteins on the Photochemistry of DNA in Spores of <i>Bacillus subtilis</i> and <i>In Vitro</i> [¶] . Photochemistry and Photobiology, 2005, 81, 163-169.	1.3	6
372	Mechanisms of killing of <i>Bacillus thuringiensis</i> Al Hakam spores in a blast environment with and without iodic acid. Journal of Applied Microbiology, 2020, 128, 1378-1389.	1.4	6
373	Analysis of 5′-NAD capping of mRNAs in dormant spores of <i>Bacillus subtilis</i> . FEMS Microbiology Letters, 2020, 367, .	0.7	6
374	Analysis of disulphide bond linkage between CoA and protein cysteine thiols during sporulation and in spores of <i>Bacillus</i> species. FEMS Microbiology Letters, 2020, 367, .	0.7	6
375	Predicting the Structure and Dynamics of Membrane Protein GerAB from Bacillus subtilis. International Journal of Molecular Sciences, 2021, 22, 3793.	1.8	6
376	Chemical insights into dodecylamine spore lethal germination. Chemical Science, 2014, 5, 3320-3324.	3.7	5
377	YwqL (EndoV), ExoA and PolA act in a novel alternative excision pathway to repair deaminated DNA bases in Bacillus subtilis. PLoS ONE, 2019, 14, e0211653.	1.1	5
378	Investigating Synthesis of the MalS Malic Enzyme during Bacillus subtilis Spore Germination and Outgrowth and the Influence of Spore Maturation and Sporulation Conditions. MSphere, 2020, 5, .	1.3	5

#	Article	lF	CITATIONS
379	Dodecylamine rapidly kills of spores of multiple Firmicute species: properties of the killed spores and the mechanism of the killing. Journal of Applied Microbiology, 2021, 131, 2612-2625.	1.4	5
380	Characterization of Heterogeneity and Dynamics of Lysis of Single <i>Bacillus subtilis</i> Cells upon Prophage Induction During Spore Germination, Outgrowth, and Vegetative Growth Using Raman Tweezers and Live-Cell Phase-Contrast Microscopy. Analytical Chemistry, 2021, 93, 1443-1450.	3.2	5
381	Dynamics of Germinosome Formation and FRET-Based Analysis of Interactions between GerD and Germinant Receptor Subunits in Bacillus cereus Spores. International Journal of Molecular Sciences, 2021, 22, 11230.	1.8	5
382	Organization and dynamics of the SpoVAEa protein and its surrounding inner membrane lipids, upon germination of Bacillus subtilis spores. Scientific Reports, 2022, 12, 4944.	1.6	5
383	Enhanced Safety and Extended Shelf Life of Fresh Produce for the Military. , 0, , 263-287.		4
384	Structural and Genetic Analysis of X-Ray Scattering by Spores of Bacillus subtilis. Journal of Bacteriology, 2009, 191, 7620-7622.	1.0	4
385	Effects of High Pressure on Bacterial Spores. , 0, , 35-52.		4
386	The Portable Chemical Sterilizer (PCS), D-FENS, and D-FEND ALL: Novel Chlorine Dioxide Decontamination Technologies for the Military. Journal of Visualized Experiments, 2014, , e4354.	0.2	4
387	The GerW Protein Is Not Involved in the Germination of Spores of Bacillus Species. PLoS ONE, 2015, 10, e0119125.	1.1	4
388	Spore photoproduct within DNA is a surprisingly poor substrate for its designated repair enzyme—The spore photoproduct lyase. DNA Repair, 2017, 53, 31-42.	1.3	4
389	Effects of the microbicide ceragenin CSAâ€∃3 on and properties ofBacillus subtilisspores prepared on two very different media. Journal of Applied Microbiology, 2019, 127, 109-120.	1.4	4
390	High-Precision Fitting Measurements of the Kinetics of Size Changes during Germination of Individual Bacillus Spores. Applied and Environmental Microbiology, 2014, 80, 4606-4615.	1.4	3
391	Fluoride movement into and out ofBacillusspores and growing cells and effects of fluoride accumulation on spore properties. Journal of Applied Microbiology, 2019, 126, 503-515.	1.4	3
392	Lack of efficient killing of purified dormant spores of Bacillales and Clostridiales species by glycerol monolaurate in a nonâ€aqueous gel. Letters in Applied Microbiology, 2020, 70, 407-412.	1.0	3
393	Visualization of SpoVAEa Protein Dynamics in Dormant Spores of <i>Bacillus cereus</i> and Dynamic Changes in Their Germinosomes and SpoVAEa during Germination. Microbiology Spectrum, 2022, 10, e0066622.	1.2	3
394	Classification of endospores of bacillus and clostridium species by FT-IR reflectance microspectroscopy and Autoclaving. , 0, , .		1
395	Levels and Characteristics of mRNAs in Spores of Firmicute Species. Journal of Bacteriology, 2021, 203, e0001721.	1.0	1
396	Monitoring of germination dynamics of multiple individual bacterial spores by multiple-trap Raman tweezers and differential interference contrast microscopy. , 2011, , .		0

#	Article	IF	CITATIONS
397	Deactivation Analysis of Spores in a High Temperature Gas Using a Coupled Water Diffusion and Heat Transfer Model. , 2012, , .		0
398	Quasi-chemical Germination Kinetics (QCGK) modeling of HPP germination of bacterial spores and the effects of lowering water activity by nonelectrolytic humectants. , 2021, , 130-140.		0
399	Endopeptidase GPR. , 2004, , 983-984.		Ο
400	Combining Phase Contrast Microscopy and Laser Tweezers Raman Spectroscopy to Characterize Germination of Single Bacterial Spores. , 2011, , .		0