Nibaldo Inestrosa Cantin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8674145/publications.pdf Version: 2024-02-01

		9786	17592
330	19,413	73	121
papers	citations	h-index	g-index
332	332	332	18096
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Age- and Sex-Associated Glucose Metabolism Decline in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, , 1-17.	2.6	3
2	Differential Role of Sex and Age in the Synaptic Transmission of Degus (Octodon degus). Frontiers in Integrative Neuroscience, 2022, 16, 799147.	2.1	1
3	"Live together, die alone†The effect of re-socialization on behavioural performance and social-affective brain-related proteins after a long-term chronic social isolation stress. Neurobiology of Stress, 2021, 14, 100289.	4.0	12
4	Andrographolide restores glucose uptake in rat hippocampal neurons. Journal of Neurochemistry, 2021, 157, 1222-1233.	3.9	11
5	Wnt5a promotes hippocampal postsynaptic development and GluN2B-induced expression via the elF2α HRI kinase. Scientific Reports, 2021, 11, 7395.	3.3	8
6	Wnt5a modulates dendritic spine dynamics through the regulation of Cofilin via small Rho GTPase activity in hippocampal neurons. Journal of Neurochemistry, 2021, 158, 673-693.	3.9	5
7	A Multivariate Assessment of Age-Related Cognitive Impairment in Octodon degus. Frontiers in Integrative Neuroscience, 2021, 15, 719076.	2.1	6
8	Morphological neurite changes induced by porcupine inhibition are rescued by Wnt ligands. Cell Communication and Signaling, 2021, 19, 87.	6.5	4
9	The transcriptional landscape of Alzheimer's disease and its association with Wnt signaling pathway. Neuroscience and Biobehavioral Reviews, 2021, 128, 454-466.	6.1	8
10	Neurodevelopmental impact of the offspring by thyroid hormone system-disrupting environmental chemicals during pregnancy. Environmental Research, 2021, 200, 111345.	7.5	27
11	Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. Journal of Medicinal Chemistry, 2021, 64, 812-839.	6.4	45
12	Selective Surface and Intraluminal Localization of Wnt Ligands on Small Extracellular Vesicles Released by HT-22 Hippocampal Neurons. Frontiers in Cell and Developmental Biology, 2021, 9, 735888.	3.7	14
13	Disruption of Glucose Metabolism in Aged Octodon degus: A Sporadic Model of Alzheimer's Disease. Frontiers in Integrative Neuroscience, 2021, 15, 733007.	2.1	2
14	Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 84, 1391-1414.	2.6	26
15	Huperzine A and Its Neuroprotective Molecular Signaling in Alzheimer's Disease. Molecules, 2021, 26, 6531.	3.8	33
16	WNT Signaling Is a Key Player in Alzheimer's Disease. Handbook of Experimental Pharmacology, 2021, 269, 357-382.	1.8	6
17	Andrographolide promotes hippocampal neurogenesis and spatial memory in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease. Scientific Reports, 2021, 11, 22904.	3.3	10
18	Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells, 2020, 38, 422-436.	3.2	53

#	Article	IF	CITATIONS
19	Andrographolide Reduces Neuroinflammation and Oxidative Stress in Aged Octodon degus. Molecular Neurobiology, 2020, 57, 1131-1145.	4.0	30
20	Canonical Wnt Signaling Modulates the Expression of Pre- and Postsynaptic Components in Different Temporal Patterns. Molecular Neurobiology, 2020, 57, 1389-1404.	4.0	14
21	Effects of long-lasting social isolation and re-socialization on cognitive performance and brain activity: a longitudinal study in Octodon degus. Scientific Reports, 2020, 10, 18315.	3.3	28
22	Wnt Signaling Pathway Dysregulation in the Aging Brain: Lessons From the Octodon degus. Frontiers in Cell and Developmental Biology, 2020, 8, 734.	3.7	23
23	Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells, 2020, 9, 2402.	4.1	5
24	Toll-Like Receptors (TLRs) in Neurodegeneration: Integrative Approach to TLR Cascades in Alzheimer's and Parkinson's Diseases. , 2020, , .		2
25	Hormetic-Like Effects of L-Homocysteine on Synaptic Structure, Function, and AÎ ² Aggregation. Pharmaceuticals, 2020, 13, 24.	3.8	11
26	Evidence of Synaptic and Neurochemical Remodeling in the Retina of Aging Degus. Frontiers in Neuroscience, 2020, 14, 161.	2.8	16
27	Toward an integrative understanding of the neuroinflammatory molecular milieu in Alzheimer disease neurodegeneration. , 2020, , 163-176.		0
28	Revisiting the Paraquat-Induced Sporadic Parkinson's Disease-Like Model. Molecular Neurobiology, 2019, 56, 1044-1055.	4.0	65
29	Hypothyroidism and Cognitive Disorders during Development and Adulthood: Implications in the Central Nervous System. Molecular Neurobiology, 2019, 56, 2952-2963.	4.0	48
30	Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin. Molecular Neurobiology, 2019, 56, 3024-3037.	4.0	34
31	Wnt-7a Stimulates Dendritic Spine Morphogenesis and PSD-95 Expression Through Canonical Signaling. Molecular Neurobiology, 2019, 56, 1870-1882.	4.0	27
32	Fructose and prostate cancer: toward an integrated view of cancer cell metabolism. Prostate Cancer and Prostatic Diseases, 2019, 22, 49-58.	3.9	13
33	Molecular Basis of Neurodegeneration: Lessons from Alzheimer's and Parkinson's Diseases. , 2019, , .		2
34	Serine–Arginine Protein Kinase SRPK2 Modulates the Assembly of the Active Zone Scaffolding Protein CAST1/ERC2. Cells, 2019, 8, 1333.	4.1	6
35	Presymptomatic Treatment With Andrographolide Improves Brain Metabolic Markers and Cognitive Behavior in a Model of Early-Onset Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2019, 13, 295.	3.7	34
36	Wnt Signaling Upregulates Teneurin-3 Expression via Canonical and Non-canonical Wnt Pathway Crosstalk. Frontiers in Neuroscience, 2019, 13, 505.	2.8	6

#	Article	IF	CITATIONS
37	GALECTIN-8 Is a Neuroprotective Factor in the Brain that Can Be Neutralized by Human Autoantibodies. Molecular Neurobiology, 2019, 56, 7774-7788.	4.0	22
38	Non-canonical function of IRE1α determines mitochondria-associated endoplasmic reticulum composition to control calcium transfer and bioenergetics. Nature Cell Biology, 2019, 21, 755-767.	10.3	168
39	Modulating Wnt signaling at the root: Porcupine and Wnt acylation. , 2019, 198, 34-45.		65
40	MicroRNAs in Metabolic Syndrome. , 2019, , 709-725.		0
41	The Exocyst Component Exo70 Modulates Dendrite Arbor Formation, Synapse Density, and Spine Maturation in Primary Hippocampal Neurons. Molecular Neurobiology, 2019, 56, 4620-4638.	4.0	19
42	Wntâ€induced activation of glucose metabolism mediates the <i>inÂvivo</i> neuroprotective roles of Wnt signaling in Alzheimer disease. Journal of Neurochemistry, 2019, 149, 54-72.	3.9	49
43	Local Klotho Enhances Neuronal Progenitor Proliferation in the Adult Hippocampus. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1043-1051.	3.6	15
44	Cognitive impairment in heart failure is associated with altered Wnt signaling in the hippocampus. Aging, 2019, 11, 5924-5942.	3.1	23
45	Diterpenes and the crosstalk with the arachidonic acid pathways, relevance in neurodegeneration. Neural Regeneration Research, 2019, 14, 1705.	3.0	1
46	Neuroprotective Effects of Ferruginol, Jatrophone, and Junicedric Acid Against Amyloid-β Injury in Hippocampal Neurons. Journal of Alzheimer's Disease, 2018, 63, 705-723.	2.6	8
47	Nicotine Modulates Mitochondrial Dynamics in Hippocampal Neurons. Molecular Neurobiology, 2018, 55, 8965-8977.	4.0	13
48	Long-Term, Fructose-Induced Metabolic Syndrome-Like Condition Is Associated with Higher Metabolism, Reduced Synaptic Plasticity and Cognitive Impairment in Octodon degus. Molecular Neurobiology, 2018, 55, 9169-9187.	4.0	16
49	APP/Go protein Gβγ-complex signaling mediates Aβ degeneration and cognitive impairment in Alzheimer's disease models. Neurobiology of Aging, 2018, 64, 44-57.	3.1	15
50	Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. Progress in Molecular Biology and Translational Science, 2018, 153, 81-130.	1.7	68
51	Wnt3a ligand facilitates autophagy in hippocampal neurons by modulating a novel GSK-3β-AMPK axis. Cell Communication and Signaling, 2018, 16, 15.	6.5	36
52	Vertebrate Presynaptic Active Zone Assembly: a Role Accomplished by Diverse Molecular and Cellular Mechanisms. Molecular Neurobiology, 2018, 55, 4513-4528.	4.0	23
53	Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20â€ <scp>APP</scp> transgenic and wildâ€ŧype mice. Journal of Neurochemistry, 2018, 144, 443-465.	3.9	66
54	New Insights into the Spontaneous Human Alzheimer's Disease-Like Model Octodon degus: Unraveling Amyloid-l² Peptide Aggregation and Age-Related Amyloid Pathology. Journal of Alzheimer's Disease, 2018, 66, 1145-1163.	2.6	21

#	Article	IF	CITATIONS
55	Loss of canonical Wnt signaling is involved in the pathogenesis of Alzheimer's disease. Neural Regeneration Research, 2018, 13, 1705.	3.0	100
56	PSD-95 (Postsynaptic Density Protein-95). , 2018, , 4263-4269.		0
57	Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. Molecular Neurobiology, 2017, 54, 1759-1776.	4.0	60
58	Induction of hypothyroidism during early postnatal stages triggers a decrease in cognitive performance by decreasing hippocampal synaptic plasticity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 870-883.	3.8	28
59	<scp>PPARs</scp> in the central nervous system: roles in neurodegeneration and neuroinflammation. Biological Reviews, 2017, 92, 2046-2069.	10.4	80
60	Brain glucose metabolism: Role of Wnt signaling in the metabolic impairment in Alzheimer's disease. Neuroscience and Biobehavioral Reviews, 2017, 80, 316-328.	6.1	32
61	INT131 increases dendritic arborization and protects against Aβ toxicity by inducing mitochondrial changes in hippocampal neurons. Biochemical and Biophysical Research Communications, 2017, 490, 955-962.	2.1	6
62	Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and AÎ ² Aggregates in Hippocampal Neurons: the Role of Mitochondria. Molecular Neurobiology, 2017, 54, 7116-7128.	4.0	56
63	Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain, 2017, 140, 3252-3268.	7.6	121
64	Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders. Neural Plasticity, 2017, 2017, 1-25.	2.2	57
65	Wnt/TLR Dialog in Neuroinflammation, Relevance in Alzheimer's Disease. Frontiers in Immunology, 2017, 8, 187.	4.8	39
66	Identification of Cerebral Metal Ion Imbalance in the Brain of Aging Octodon degus. Frontiers in Aging Neuroscience, 2017, 9, 66.	3.4	26
67	Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons. PLoS ONE, 2017, 12, e0168840.	2.5	41
68	MicroRNAs in Metabolic Syndrome. , 2017, , 1-17.		0
69	Wnt5a Increases the Glycolytic Rate and the Activity of the Pentose Phosphate Pathway in Cortical Neurons. Neural Plasticity, 2016, 2016, 1-13.	2.2	10
70	TheCαoActivator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons. Neural Plasticity, 2016, 2016, 1-11.	2.2	9
71	Andrographolide recovers cognitive impairment in a natural model of Alzheimer's disease (Octodon) Tj ETQq1 1	0.784314 3.1	rgBT /Over o
72	Reduction of Blood Amyloid-β Oligomers in Alzheimer's Disease Transgenic Mice by c-Abl Kinase Inhibition. Journal of Alzheimer's Disease, 2016, 54, 1193-1205.	2.6	23

#	Article	IF	CITATIONS
73	Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-GβĴ³ Complex Regulates Dendritic Spine Formation. Journal of Biological Chemistry, 2016, 291, 19092-19107.	3.4	53
74	Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis. Journal of Biological Chemistry, 2016, 291, 25950-25964.	3.4	46
75	Amyloid-β Peptide Nitrotyrosination Stabilizes Oligomers and Enhances NMDAR-Mediated Toxicity. Journal of Neuroscience, 2016, 36, 11693-11703.	3.6	50
76	Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloidâ€Ĥ² (Al²) ₄₂ peptides. Journal of Neurochemistry, 2016, 139, 1175-1191.	3.9	62
77	Frizzled-1 receptor regulates adult hippocampal neurogenesis. Molecular Brain, 2016, 9, 29.	2.6	60
78	On cognitive ecology and the environmental factors that promote Alzheimer disease: lessons from Octodon degus (Rodentia: Octodontidae). Biological Research, 2016, 49, 10.	3.4	25
79	Wnt-5a-regulated miR-101b controls COX2 expression in hippocampal neurons. Biological Research, 2016, 49, 9.	3.4	17
80	Modulation of the NMDA Receptor Through Secreted Soluble Factors. Molecular Neurobiology, 2016, 53, 299-309.	4.0	17
81	Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of <scp>A</scp> lzheimer's Disease. Brain Pathology, 2016, 26, 62-74.	4.1	128
82	Are microRNAs the Molecular Link Between Metabolic Syndrome and Alzheimer's Disease?. Molecular Neurobiology, 2016, 53, 2320-2338.	4.0	27
83	Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne muscular dystrophy. Neurobiology of Disease, 2016, 86, 109-120.	4.4	11
84	Environmental control of microRNAs in the nervous system: Implications in plasticity and behavior. Neuroscience and Biobehavioral Reviews, 2016, 60, 121-138.	6.1	22
85	Role of Wnt Signaling in Central Nervous System Injury. Molecular Neurobiology, 2016, 53, 2297-2311.	4.0	99
86	Recent Advances in Neuroinflammation Therapeutics: PPARs/LXR as Neuroinflammatory Modulators. Current Pharmaceutical Design, 2016, 22, 1312-1323.	1.9	9
87	PSD-95 (Postsynaptic Density Protein-95). , 2016, , 1-7.		0
88	Tetrahydrohyperforin (IDN5706) targets the endoplasmic reticulum for autophagy activation: potential mechanism for Alzheimer′s disease therapy. Neural Regeneration Research, 2016, 11, 242.	3.0	0
89	Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Molecular Neurodegeneration, 2015, 10, 62.	10.8	77
90	How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Frontiers in Cellular Neuroscience, 2015, 9, 166.	3.7	61

#	Article	IF	CITATIONS
91	Wnt-related SynGAP1 is a neuroprotective factor of glutamatergic synapses against Aβ oligomers. Frontiers in Cellular Neuroscience, 2015, 9, 227.	3.7	10
92	Alzheimer's Disease-Related Protein Expression in the Retina of Octodon degus. PLoS ONE, 2015, 10, e0135499.	2.5	45
93	Andrographolide Stimulates Neurogenesis in the Adult Hippocampus. Neural Plasticity, 2015, 2015, 1-13.	2.2	47
94	<i>^{î2}</i> -Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. BioMed Research International, 2015, 2015, 1-13.	1.9	18
95	Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: autoregulation of GSK-3β <i>inÂvivo</i> . Biochemical Journal, 2015, 466, 415-430.	3.7	68
96	The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons. Molecular and Cellular Neurosciences, 2015, 67, 22-30.	2.2	11
97	Pathogenicity of Lupus Anti–Ribosomal P Antibodies: Role of Crossâ€Reacting Neuronal Surface P Antigen in Glutamatergic Transmission and Plasticity in a Mouse Model. Arthritis and Rheumatology, 2015, 67, 1598-1610.	5.6	62
98	Teneurins and Alzheimer's disease: A suggestive role for a unique family of proteins. Medical Hypotheses, 2015, 84, 402-407.	1.5	13
99	A novel function for Wnt signaling modulating neuronal firing activity and the temporal structure of spontaneous oscillation in the entorhinal–hippocampal circuit. Experimental Neurology, 2015, 269, 43-55.	4.1	21
100	Accelerating Alzheimer's research through †natural' animal models. Current Opinion in Psychiatry, 2015, 28, 155-164.	6.3	36
101	The increased potassium intake improves cognitive performance and attenuates histopathological markers in a model of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2630-2644.	3.8	26
102	Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2379-2390.	3.8	55
103	Wnt5a inhibits K+ currents in hippocampal synapses through nitric oxide production. Molecular and Cellular Neurosciences, 2015, 68, 314-322.	2.2	15
104	The soluble extracellular fragment of neuroligin-1 targets $A\hat{I}^2$ oligomers to the postsynaptic region of excitatory synapses. Biochemical and Biophysical Research Communications, 2015, 466, 66-71.	2.1	23
105	WASP-1, a canonical Wnt signaling potentiator, rescues hippocampal synaptic impairments induced by AÎ ² oligomers. Experimental Neurology, 2015, 264, 14-25.	4.1	29
106	Anti–Ribosomal P Protein Autoantibodies From Patients With Neuropsychiatric Lupus Impair Memory in Mice. Arthritis and Rheumatology, 2015, 67, 204-214.	5.6	90
107	Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent <i>Octodon degus</i> , a Natural Model of <scp>A</scp> lzheimer's Disease. Brain Pathology, 2015, 25, 679-691.	4.1	42
108	The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates AÎ ² Aggregation and Toxicity <i>In Vivo</i> . Antioxidants and Redox Signaling, 2015, 22, 48-62.	5.4	20

#	Article	IF	CITATIONS
109	Wnt signalling in neuronal differentiation and development. Cell and Tissue Research, 2015, 359, 215-223.	2.9	123
110	Monitoring Mitochondrial Membranes Permeability in Live Neurons and Mitochondrial Swelling Through Electron Microscopy Analysis. Methods in Molecular Biology, 2015, 1254, 87-97.	0.9	13
111	Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy. PLoS ONE, 2015, 10, e0136313.	2.5	34
112	Tetrahydrohyperforin: a neuroprotective modified natural compound against Alzheimer′s disease. Neural Regeneration Research, 2015, 10, 552.	3.0	7
113	PSD95 Suppresses Dendritic Arbor Development in Mature Hippocampal Neurons by Occluding the Clustering of NR2B-NMDA Receptors. PLoS ONE, 2014, 9, e94037.	2.5	63
114	Alzheimerââ,¬â,,¢s disease: relevant molecular and physiopathological events affecting amyloid-β brain balance and the putative role of PPARs. Frontiers in Aging Neuroscience, 2014, 6, 176.	3.4	46
115	Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo. Frontiers in Cellular Neuroscience, 2014, 8, 17.	3.7	60
116	Wnt-5a Ligand Modulates Mitochondrial Fission-Fusion in Rat Hippocampal Neurons. Journal of Biological Chemistry, 2014, 289, 36179-36193.	3.4	56
117	Role of Sirt1 During the Ageing Process: Relevance to Protection of Synapses in the Brain. Molecular Neurobiology, 2014, 50, 744-756.	4.0	44
118	Brain metabolite clearance: impact on Alzheimer's disease. Metabolic Brain Disease, 2014, 29, 553-561.	2.9	10
119	Wnt signaling in the nervous system and in Alzheimer's disease. Journal of Molecular Cell Biology, 2014, 6, 64-74.	3.3	260
120	Wnt-5a increases NO and modulates NMDA receptor in rat hippocampal neurons. Biochemical and Biophysical Research Communications, 2014, 444, 189-194.	2.1	39
121	<i>In vivo</i> Activation of <i>Wnt</i> Signaling Pathway Enhances Cognitive Function of Adult Mice and Reverses Cognitive Deficits in an Alzheimer's Disease Model. Journal of Neuroscience, 2014, 34, 2191-2202.	3.6	125
122	Wnt Signaling in Skeletal Muscle Dynamics: Myogenesis, Neuromuscular Synapse and Fibrosis. Molecular Neurobiology, 2014, 49, 574-589.	4.0	107
123	Phosphorylated tau potentiates Aβ-induced mitochondrial damage in mature neurons. Neurobiology of Disease, 2014, 71, 260-269.	4.4	55
124	Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum. Progress in Neurobiology, 2014, 121, 125-146.	5.7	87
125	Signaling pathway cross talk in Alzheimer's disease. Cell Communication and Signaling, 2014, 12, 23.	6.5	126
126	Synthesis and Multitarget Biological Profiling of a Novel Family of Rhein Derivatives As Disease-Modifying Anti-Alzheimer Agents. Journal of Medicinal Chemistry, 2014, 57, 2549-2567.	6.4	132

#	Article	IF	CITATIONS
127	Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Molecular Neurodegeneration, 2014, 9, 61.	10.8	95
128	EphA4 Activation of c-Abl Mediates Synaptic Loss and LTP Blockade Caused by Amyloid-β Oligomers. PLoS ONE, 2014, 9, e92309.	2.5	75
129	Metal and complementary molecular bioimaging in Alzheimer's disease. Frontiers in Aging Neuroscience, 2014, 6, 138.	3.4	44
130	Nicotine Prevents Synaptic Impairment Induced by Amyloid-β Oligomers Through α7-Nicotinic Acetylcholine Receptor Activation. NeuroMolecular Medicine, 2013, 15, 549-569.	3.4	77
131	Tetrahydrohyperforin Induces Mitochondrial Dynamics and Prevents Mitochondrial Ca2+ Overload after Al² and Al²-AChE Complex Challenge in Rat Hippocampal Neurons. Journal of Alzheimer's Disease, 2013, 37, 735-746.	2.6	12
132	Tetrahydrohyperforin Decreases Cholinergic Markers associated with Amyloid-β Plaques, 4-Hydroxynonenal Formation, and Caspase-3 Activation in AβPP/PS1 Mice. Journal of Alzheimer's Disease, 2013, 36, 99-118.	2.6	26
133	Peroxisome Proliferators Reduce Spatial Memory Impairment, Synaptic Failure, and Neurodegeneration in Brains of a Double Transgenic Mice Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 33, 941-959.	2.6	49
134	Tetrahydrohyperforin Increases Adult Hippocampal Neurogenesis in Wild-Type and APPswe/PS1ΔE9 Mice. Journal of Alzheimer's Disease, 2013, 34, 873-885.	2.6	34
135	Peroxisome Proliferator-Activated Receptor (PPAR) Î ³ and PPARα Agonists Modulate Mitochondrial Fusion-Fission Dynamics: Relevance to Reactive Oxygen Species (ROS)-Related Neurodegenerative Disorders?. PLoS ONE, 2013, 8, e64019.	2.5	84
136	Wnt signaling: Role in LTP, neural networks and memory. Ageing Research Reviews, 2013, 12, 786-800.	10.9	76
137	Peroxisome Proliferator-activated Receptors and Alzheimer's Disease: Hitting the Blood–Brain Barrier. Molecular Neurobiology, 2013, 48, 438-451.	4.0	36
138	Wnt signaling in the regulation of adult hippocampal neurogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 100.	3.7	151
139	Frizzled-5 Receptor Is Involved in Neuronal Polarity and Morphogenesis of Hippocampal Neurons. PLoS ONE, 2013, 8, e78892.	2.5	32
140	Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5a/Ca2+ in mitochondrial dynamics. Frontiers in Cellular Neuroscience, 2013, 7, 97.	3.7	77
141	WNT signaling in neuronal maturation and synaptogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 103.	3.7	204
142	Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Frontiers in Cellular Neuroscience, 2013, 7, 224.	3.7	128
143	ATP Induces NO Production in Hippocampal Neurons by P2X7 Receptor Activation Independent of Glutamate Signaling. PLoS ONE, 2013, 8, e57626.	2.5	27
144	Thiazolidinediones Promote Axonal Growth through the Activation of the JNK Pathway. PLoS ONE, 2013, 8, e65140.	2.5	24

#	Article	IF	CITATIONS
145	Postsynaptic Receptors for Amyloid-β Oligomers as Mediators of Neuronal Damage in Alzheimer's Disease. Frontiers in Physiology, 2012, 3, 464.	2.8	84
146	Wnt Signaling: Role in Alzheimer Disease and Schizophrenia. Journal of NeuroImmune Pharmacology, 2012, 7, 788-807.	4.1	165
147	Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13835-13840.	7.1	113
148	Wnt-5a ls a Synaptogenic Factor with Neuroprotective Properties against AÎ ² Toxicity. Neurodegenerative Diseases, 2012, 10, 23-26.	1.4	30
149	Frizzled receptors in neurons: From growth cones to the synapse. Cytoskeleton, 2012, 69, 528-534.	2.0	25
150	Reusing and composing models of cell fate regulation of human bone precursor cells. BioSystems, 2012, 108, 63-72.	2.0	5
151	Recent rodent models for Alzheimer's disease: clinical implications and basic research. Journal of Neural Transmission, 2012, 119, 173-195.	2.8	97
152	SIRT1 Regulates Dendritic Development in Hippocampal Neurons. PLoS ONE, 2012, 7, e47073.	2.5	68
153	Regulation of NMDA-Receptor Synaptic Transmission by Wnt Signaling. Journal of Neuroscience, 2011, 31, 9466-9471.	3.6	136
154	The GABA(A)ϕreceptors in hippocampal spontaneous activity and their distribution in hippocampus, amygdala and visual cortex. Neuroscience Letters, 2011, 500, 20-25.	2.1	18
155	Interactions of AChE with A? Aggregates in Alzheimer?s Brain: Therapeutic Relevance of IDN 5706. Frontiers in Molecular Neuroscience, 2011, 4, 19.	2.9	132
156	The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>X</mml:mtext>< International Journal of Alzheimer's Disease, 2011, 2011, 1-6.</mml:msub></mml:mrow></mml:math 	:mr alo ntex	t> 4
157	The Synaptic Protein Neuroligin-1 Interacts with the Amyloid β-Peptide. Is There a Role in Alzheimer's Disease?. Biochemistry, 2011, 50, 8127-8137.	2.5	49
158	Copper Reduces AÂ Oligomeric Species and Ameliorates Neuromuscular Synaptic Defects in a C. elegans Model of Inclusion Body Myositis. Journal of Neuroscience, 2011, 31, 10149-10158.	3.6	39
159	Wnt signaling modulates pre―and postsynaptic maturation: Therapeutic considerations. Developmental Dynamics, 2010, 239, 94-101.	1.8	30
160	Genome-wide identification of new Wnt/β-catenin target genes in the human genome using CART method. BMC Genomics, 2010, 11, 348.	2.8	50
161	Adult hippocampal neurogenesis in aging and Alzheimer's disease. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 284-296.	3.6	49
162	Wnt-5aoccludes AÎ ² oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Molecular Neurodegeneration, 2010, 5, 3.	10.8	107

#	Article	IF	CITATIONS
163	Amyloid-β-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Aβ peptide. Implications for the pathogenesis of Alzheimer's disease. Molecular Neurodegeneration, 2010, 5, 4.	10.8	96
164	Emerging roles of Wnts in the adult nervous system. Nature Reviews Neuroscience, 2010, 11, 77-86.	10.2	558
165	β-Amyloid Causes Depletion of Synaptic Vesicles Leading to Neurotransmission Failure. Journal of Biological Chemistry, 2010, 285, 2506-2514.	3.4	153
166	Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21164-21169.	7.1	185
167	The Hyperforin Derivative IDN5706 Occludes Spatial Memory Impairments and Neuropathological Changes in a Double Transgenic Alzheimers Mouse Model. Current Alzheimer Research, 2010, 7, 126-133.	1.4	38
168	Synaptic Clustering of PSD-95 Is Regulated by c-Abl through Tyrosine Phosphorylation. Journal of Neuroscience, 2010, 30, 3728-3738.	3.6	50
169	Wnt-5a Modulates Recycling of Functional GABAA Receptors on Hippocampal Neurons. Journal of Neuroscience, 2010, 30, 8411-8420.	3.6	112
170	Wnt-5a/JNK Signaling Promotes the Clustering of PSD-95 in Hippocampal Neurons. Journal of Biological Chemistry, 2009, 284, 15857-15866.	3.4	187
171	câ€Abl modulates AICD dependent cellular responses: Transcriptional induction and apoptosis. Journal of Cellular Physiology, 2009, 220, 136-143.	4.1	38
172	Calcium/calmodulinâ€dependent protein kinase type IV is a target gene of the <i>Wnt</i> /β atenin signaling pathway. Journal of Cellular Physiology, 2009, 221, 658-667.	4.1	71
173	Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Development, 2009, 4, 41.	2.4	95
174	Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification. Molecular Neurodegeneration, 2009, 4, 2.	10.8	39
175	Methionine sulfoxide reductase A expression is regulated by the DAFâ€16/FOXO pathway in <i>Caenorhabditis elegans</i> . Aging Cell, 2009, 8, 690-705.	6.7	70
176	Overexpression of amyloid precursor protein increases copper content in HEK293 cells. Biochemical and Biophysical Research Communications, 2009, 382, 740-744.	2.1	15
177	The role of Wnt signaling in neuroprotection. Drug News and Perspectives, 2009, 22, 579.	1.5	30
178	Inclusion Body Myositis: A View from the Caenorhabditis elegans Muscle. Molecular Neurobiology, 2008, 38, 178-198.	4.0	15
179	The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease. Molecular Neurodegeneration, 2008, 3, 9.	10.8	164
180	Heparin activates Wnt signaling for neuronal morphogenesis. Journal of Cellular Physiology, 2008, 216, 805-815.	4.1	34

#	Article	IF	CITATIONS
181	Frizzledâ€1 is involved in the neuroprotective effect of Wnt3a against Aβ oligomers. Journal of Cellular Physiology, 2008, 217, 215-227.	4.1	80
182	Amyloid–cholinesterase interactions. FEBS Journal, 2008, 275, 625-632.	4.7	215
183	Release of acetylcholinesterase (AChE) from β-amyloid plaques assemblies improves the spatial memory impairments in APP-transgenic mice. Chemico-Biological Interactions, 2008, 175, 142-149.	4.0	37
184	β-Amyloid Oligomers Affect the Structure and Function of the Postsynaptic Region: Role of the <i>Wnt</i> Signaling Pathway. Neurodegenerative Diseases, 2008, 5, 149-152.	1.4	31
185	Wnt signaling in neuroprotection and stem cell differentiation. Progress in Neurobiology, 2008, 86, 281-296.	5.7	182
186	STI571 prevents apoptosis, tau phosphorylation and behavioural impairments induced by Alzheimer's β-amyloid deposits. Brain, 2008, 131, 2425-2442.	7.6	136
187	Wnt-7a Modulates the Synaptic Vesicle Cycle and Synaptic Transmission in Hippocampal Neurons. Journal of Biological Chemistry, 2008, 283, 5918-5927.	3.4	205
188	Structure-Function Implications in Alzheimers Disease: Effect of Aβ Oligomers at Central Synapses. Current Alzheimer Research, 2008, 5, 233-243.	1.4	91
189	Expression of Wnt Receptors, Frizzled, in Rat Neuronal Cells. , 2008, , 317-324.		0
190	Wnt-7a Induces Presynaptic Colocalization of Â7-Nicotinic Acetylcholine Receptors and Adenomatous Polyposis Coli in Hippocampal Neurons. Journal of Neuroscience, 2007, 27, 5313-5325.	3.6	101
191	Peroxisome Proliferator-activated Receptor Î ³ Up-regulates the Bcl-2 Anti-apoptotic Protein in Neurons and Induces Mitochondrial Stabilization and Protection against Oxidative Stress and Apoptosis. Journal of Biological Chemistry, 2007, 282, 37006-37015.	3.4	223
192	ApoER2 expression increases AÎ ² production while decreasing Amyloid Precursor Protein (APP) endocytosis: Possible role in the partitioning of APP into lipid rafts and in the regulation of Î ³ -secretase activity. Molecular Neurodegeneration, 2007, 2, 14.	10.8	66
193	Synaptotoxicity in Alzheimer's Disease: The Wnt Signaling Pathway as a Molecular Target. IUBMB Life, 2007, 59, 316-321.	3.4	58
194	The functional links between prion protein and copper. Biological Research, 2006, 39, 39-44.	3.4	20
195	Induction of cellular prion protein gene expression by copper in neurons. American Journal of Physiology - Cell Physiology, 2006, 290, C271-C281.	4.6	58
196	Role of Copper in Prion Diseases: Deleterious or Beneficial?. Current Pharmaceutical Design, 2006, 12, 2587-2595.	1.9	18
197	Copper brain homeostasis: Role of amyloid precursor protein and prion protein. IUBMB Life, 2005, 57, 645-650.	3.4	23
198	ApoER2 is Endocytosed by a Clathrin-Mediated Process Involving the Adaptor Protein Dab2 Independent of its Rafts' Association. Traffic, 2005, 6, 820-838.	2.7	64

#	Article	IF	CITATIONS
199	Acetylcholinesterase-Amyloid-β-peptide Interaction: Effect of Congo Red and the Role of the Wnt Pathway. Current Alzheimer Research, 2005, 2, 301-306.	1.4	39
200	Peroxisomal Proliferation Protects from \hat{l}^2 -Amyloid Neurodegeneration. Journal of Biological Chemistry, 2005, 280, 41057-41068.	3.4	137
201	Blood Cells Cholinesterase Activity in Early Stage Alzheimer's Disease and Vascular Dementia. Dementia and Geriatric Cognitive Disorders, 2005, 19, 204-212.	1.5	29
202	Peroxisome proliferator-activated receptor Î ³ is expressed in hippocampal neurons and its activation prevents Î ² -amyloid neurodegeneration: role of Wnt signaling. Experimental Cell Research, 2005, 304, 91-104.	2.6	181
203	Trolox and 17β-Estradiol Protect against Amyloid β-Peptide Neurotoxicity by a Mechanism That Involves Modulation of the Wnt Signaling Pathway. Journal of Biological Chemistry, 2005, 280, 11615-11625.	3.4	109
204	The anti-inflammatory and cholinesterase inhibitor bifunctional compound IBU-PO protects from β-amyloid neurotoxicity by acting on Wnt signaling components. Neurobiology of Disease, 2005, 18, 176-183.	4.4	35
205	Is there a role for copper in neurodegenerative diseases?. Molecular Aspects of Medicine, 2005, 26, 405-420.	6.4	65
206	Human-like rodent amyloid-β-peptide determines Alzheimer pathology in aged wild-type Octodon degu. Neurobiology of Aging, 2005, 26, 1023-1028.	3.1	106
207	Acetylcholinesterase Interaction with Alzheimer Amyloid \hat{l}^2 ., 2005, 38, 299-317.		86
208	An Overview of the Current and Novel Drugs for Alzheimers Disease with Particular Reference to Anti-Cholinesterase Compounds. Current Pharmaceutical Design, 2004, 10, 3121-3130.	1.9	75
209	The Nâ€ŧerminal copperâ€binding domain of the amyloid precursor protein protects against Cu 2+ neurotoxicity in vivo. FASEB Journal, 2004, 18, 1701-1703.	0.5	40
210	Stepwise construction of triple-helical heparin binding sites using peptide models. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1698, 187-195.	2.3	10
211	Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. Journal of Cell Science, 2004, 117, 73-84.	2.0	112
212	Signal transduction during amyloid-β-peptide neurotoxicity: role in Alzheimer disease. Brain Research Reviews, 2004, 47, 275-289.	9.0	121
213	Structural and functional organization of synaptic acetylcholinesterase. Brain Research Reviews, 2004, 47, 96-104.	9.0	41
214	Wnt-3a overcomes β-amyloid toxicity in rat hippocampal neurons. Experimental Cell Research, 2004, 297, 186-196.	2.6	203
215	Structure and function of amyloid in Alzheimer's disease. Progress in Neurobiology, 2004, 74, 323-349.	5.7	126
216	Acetylcholinesterase-Aβ Complexes Are More Toxic than Aβ Fibrils in Rat Hippocampus. American Journal of Pathology, 2004, 164, 2163-2174.	3.8	128

#	Article	IF	CITATIONS
217	M1 muscarinic receptor activation protects neurons from β-amyloid toxicity. A role for Wnt signaling pathway. Neurobiology of Disease, 2004, 17, 337-348.	4.4	71
218	Acetylcholinesterase (AChE) - Amyloid-β-Peptide Complexes in Alzheimers Disease. The Wnt Signaling Pathway. Current Alzheimer Research, 2004, 1, 249-254.	1.4	51
219	Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. BioMetals, 2003, 16, 91-98.	4.1	73
220	PPAR ? activators induce growth arrest and process extension in B12 oligodendrocyte-like cells and terminal differentiation of cultured oligodendrocytes. Journal of Neuroscience Research, 2003, 72, 425-435.	2.9	69
221	Ethanol specifically decreases peroxisome proliferator activated receptor β in B12 oligodendrocyteâ€like cells. Journal of Neurochemistry, 2003, 85, 135-141.	3.9	8
222	The human prion octarepeat fragment prevents and reverses the inhibitory action of copper in the P2X ₄ receptor without modifying the zinc action. Journal of Neurochemistry, 2003, 85, 709-716.	3.9	5
223	Acetylcholinesterase induces neuronal cell loss, astrocyte hypertrophy and behavioral deficits in mammalian hippocampus. Journal of Neurochemistry, 2003, 87, 195-204.	3.9	49
224	Acetylcholinesterase induces the expression of the β-amyloid precursor protein in glia and activates glial cells in culture. Neurobiology of Disease, 2003, 14, 447-457.	4.4	26
225	Two Different Heparin-binding Domains in the Triple-helical Domain of ColQ, the Collagen Tail Subunit of Synaptic Acetylcholinesterase. Journal of Biological Chemistry, 2003, 278, 23233-23242.	3.4	46
226	Metalloenzyme-like Activity of Alzheimer's Disease β-Amyloid. Journal of Biological Chemistry, 2002, 277, 40302-40308.	3.4	536
227	Protein kinase C inhibits amyloid βâ€peptide neurotoxicity by acting on members of the Wnt pathway. FASEB Journal, 2002, 16, 1982-1984.	0.5	156
228	Laminin affects polymerization, depolymerization and neurotoxicity of $A^{\hat{l}2}$ peptide. Peptides, 2002, 23, 1229-1240.	2.4	40
229	Wnt signaling involvement in β-amyloid-dependent neurodegeneration. Neurochemistry International, 2002, 41, 341-344.	3.8	80
230	Vitamin E But Not 17β-Estradiol Protects against Vascular Toxicity Induced by β-Amyloid Wild Type and the Dutch Amyloid Variant. Journal of Neuroscience, 2002, 22, 3081-3089.	3.6	51
231	A Structural Motif of Acetylcholinesterase That Promotes Amyloid β-Peptide Fibril Formationâ€. Biochemistry, 2001, 40, 10447-10457.	2.5	385
232	Cysteine 144 Is a Key Residue in the Copper Reduction by the Î ² -Amyloid Precursor Protein. Journal of Neurochemistry, 2001, 73, 1288-1292.	3.9	51
233	Interaction of the collagen-like tail of asymmetric acetylcholinesterase with heparin depends on triple-helical conformation, sequence and stability. Biochemical Journal, 2000, 350, 283.	3.7	13
234	Interaction of the collagen-like tail of asymmetric acetylcholinesterase with heparin depends on triple-helical conformation, sequence and stability. Biochemical Journal, 2000, 350, 283-290.	3.7	31

#	Article	IF	CITATIONS
235	Molecular modeling of the collagen-like tail of asymmetric acetylcholinesterase. Protein Engineering, Design and Selection, 2000, 13, 27-34.	2.1	9
236	Expression of ?2-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP) in rat microglial cells. Journal of Neuroscience Research, 2000, 60, 401-411.	2.9	83
237	The N-Terminal Tandem Repeat Region of Human Prion Protein Reduces Copper: Role of Tryptophan Residues. Biochemical and Biophysical Research Communications, 2000, 269, 491-495.	2.1	80
238	Wnt signaling function in Alzheimer's disease. Brain Research Reviews, 2000, 33, 1-12.	9.0	275
239	The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer's disease. Progress in Neurobiology, 2000, 62, 633-648.	5.7	347
240	Interaction of Collagen-Like Peptide Models of Asymmetric Acetylcholinesterase with Glycosaminoglycans:  Spectroscopic Studies of Conformational Changes and Stability. Biochemistry, 2000, 39, 14884-14892.	2.5	15
241	Amyloid-ß-peptide reduces copper(II) to copper(I) independent of its aggregation state. Biological Research, 2000, 33, 125-31.	3.4	33
242	Molecular modeling of the amyloid-β-peptide using the homology to a fragment of triosephosphate isomerase that forms amyloid in vitro. Protein Engineering, Design and Selection, 1999, 12, 959-966.	2.1	12
243	PC12 and neuro 2a cells have different susceptibilities to acetylcholinesterase-amyloid complexes, amyloid25-35 fragment, glutamate, and hydrogen peroxide. Journal of Neuroscience Research, 1999, 56, 620-631.	2.9	61
244	Mannose receptor is present in a functional state in rat microglial cells. Journal of Neuroscience Research, 1999, 58, 387-395.	2.9	54
245	Neurotoxicity of acetylcholinesterase amyloid β-peptide aggregates is dependent on the type of Aβ peptide and the AChE concentration present in the complexes. FEBS Letters, 1999, 450, 205-209.	2.8	80
246	Peripheral binding site is involved in the neurotrophic activity of acetylcholinesterase. NeuroReport, 1999, 10, 3621-3625.	1.2	67
247	Brain acetylcholinesterase promotes amyloid-beta-peptide aggregation but does not hydrolyze amyloid precursor protein peptides. Neurochemical Research, 1998, 23, 135-140.	3.3	38
248	Molecular interactions of acetylcholinesterase with senile plaques. Journal of Physiology (Paris), 1998, 92, 341-344.	2.1	52
249	Responses induced by tacrine in neuronal and non-neuronal cell lines. , 1998, 52, 435-444.		12
250	Cellular and molecular basis of estrogen's neuroprotection. Molecular Neurobiology, 1998, 17, 73-86.	4.0	109
251	Crosslinking of amyloid-β peptide to brain acetylcholinesterase. Molecular and Chemical Neuropathology, 1998, 33, 39-49.	1.0	10
252	Developmental regulation of mouse brain monomeric acetylcholinesterase. International Journal of Developmental Neuroscience, 1998, 16, 123-134.	1.6	14

#	Article	IF	CITATIONS
253	Estrogen protects neuronal cells from the cytotoxicity induced by acetylcholinesterase-amyloid complexes. FEBS Letters, 1998, 441, 220-224.	2.8	72
254	Laminin blocks the assembly of wild-type Aβ and the Dutch variant peptide into Alzheimer's fibrils. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 1998, 5, 16-23.	3.0	34
255	At Least Two Receptors of Asymmetric Acetylcholinesterase Are Present at the Synaptic Basal Lamina ofTorpedoElectric Organ. Biochemical and Biophysical Research Communications, 1998, 250, 312-317.	2.1	12
256	A Major Portion of Synaptic Basal Lamina Acetylcholinesterase Is Detached by High Salt- and Heparin-containing Buffers from Rat Diaphragm Muscle and Torpedo Electric Organ. Journal of Biological Chemistry, 1998, 273, 4258-4265.	3.4	16
257	Stable Complexes Involving Acetylcholinesterase and Amyloid-β Peptide Change the Biochemical Properties of the Enzyme and Increase the Neurotoxicity of Alzheimer's Fibrils. Journal of Neuroscience, 1998, 18, 3213-3223.	3.6	264
258	Molecular Interactions of Acetylcholinesterase with the Synaptic Basal Lamina and the Senile Plaques. , 1998, , 167-173.		0
259	Identification of an Acetylcholinesterase Fragment that Promotes Alzheimer β-Amyloid Fibril Formation. , 1998, , 185-186.		1
260	The Heparin-Binding Sites in the Collagenic Tail of Acetylcholinesterase. , 1998, , 444-445.		0
261	Acetylcholinesterase Enhances the Neurotoxicity of \hat{I}^2 -Amyloid Fibrils. , 1998, , 182-182.		0
262	A Monoclonal Antibody against Acetylcholinesterase Inhibits the Formation of Amyloid Fibrils Induced by the Enzyme. Biochemical and Biophysical Research Communications, 1997, 232, 652-655.	2.1	102
263	Acetylcholinesterase promotes the aggregation of amyloid-β-peptide fragments by forming a complex with the growing fibrils 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1997, 272, 348-361.	4.2	274
264	Amyloid Precursor Protein Fragment and Acetylcholinesterase Increase with Cell Confluence and Differentiation in a Neuronal Cell Line. Experimental Cell Research, 1996, 229, 93-99.	2.6	22
265	Laminin inhibits amyloid-l²-peptide fibrillation. Neuroscience Letters, 1996, 218, 201-203.	2.1	70
266	Acetylcholinesterase Accelerates Assembly of Amyloid-β-Peptides into Alzheimer's Fibrils: Possible Role of the Enzyme. Neuron, 1996, 16, 881-891.	8.1	1,032
267	Sprouting and abnormal contacts of nonmedullated axons, and deposition of extracellular material induced by the amyloid precursor protein (APP) and other protease inhibitors. Brain Research, 1996, 718, 13-24.	2.2	25
268	Extracellular matrix regulates the amount of the \hat{l}^2 -amyloid precursor protein and its amyloidogenic fragments. , 1996, 166, 360-369.		29
269	Abnormal development of the locomotor activity in yellow larvae of Drosophila: a cuticular defect?. Genetica, 1996, 97, 205-210.	1.1	17
270	Tetrameric (G ₄) Acetylcholinesterase: Structure, Localization, and Physiological Regulation. Journal of Neurochemistry, 1996, 66, 1335-1346.	3.9	60

#	Article	IF	CITATIONS
271	The α-Helical to β-Strand Transition in the Amino-terminal Fragment of the Amyloid β-Peptide Modulates Amyloid Formation. Journal of Biological Chemistry, 1995, 270, 3063-3067.	3.4	298
272	Mitosis of Schwann Cells and Demyelination are Induced by the Amyloid Precursor Protein and Other Protease Inhibitors in the Rat Sciatic Nerve. European Journal of Neuroscience, 1995, 7, 152-159.	2.6	31
273	Effect of protamine on the solubilization of collagen-tailed acetylcholinesterase: potential heparin-binding consensus sequences in the tail of the enzyme. BBA - Proteins and Proteomics, 1995, 1252, 53-58.	2.1	8
274	Two Heparin-binding Domains Are Present on the Collagenic Tail of Asymmetric Acetylcholinesterase. Journal of Biological Chemistry, 1995, 270, 11043-11046.	3.4	73
275	Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-β-peptides. Neuroscience Letters, 1995, 201, 49-52.	2.1	62
276	Sensitivity of acetylcholinesterase molecular forms to inhibition by high MgCl2 concentration. BBA - Proteins and Proteomics, 1994, 1208, 286-293.	2.1	8
277	Metamorphosis of laboratory-reared larvae of Concholepas concholepas (Mollusca; Gastropoda). Aquaculture, 1994, 126, 299-303.	3.5	8
278	Monomeric amphiphilic forms of acetylcholinesterase appear early during brain development and may correspond to biosynthetic precursors of the amphiphilic G4 forms. Neuroscience Letters, 1994, 173, 155-158.	2.1	16
279	Structural Determinants of the Alzheimer's Amyloid βâ€Peptide. Journal of Neurochemistry, 1994, 63, 1191-1198.	3.9	141
280	Acetylcholinesterase changes in hearts with sinus rhythm and atrial fibrillation. General Pharmacology, 1993, 24, 111-114.	0.7	9
281	Extracellular matrix components and amyloid in neuritic plaques of Alzheimer's disease. General Pharmacology, 1993, 24, 1063-1068.	0.7	31
282	Presence of an heparin-binding growth factor in Concholepas concholepas Bruguiere (Mollusca;) Tj ETQq0 0 0 rgB	3T ₁ , Overloo	ck ₇ 10 Tf 50 3
283	Molecular changes induced by metamorphosis in larvae of the prosobranch Concholepas concholepas Bruguiere (Mollusca; Gastropoda; Muricidae). Journal of Experimental Marine Biology and Ecology, 1993, 168, 205-215.	1.5	7
284	A neurofilament polypeptide and the glial fibrillary acidic protein share common epitopes in the variable region. Neuroscience Letters, 1993, 161, 137-140.	2.1	3
285	Nerve regeneration is improved by insulin-like growth factor I (IGF-I) and basic flbroblast growth factor (bFGF). Restorative Neurology and Neuroscience, 1993, 5, 181-189.	0.7	15
286	Axonal sprouting induced in the sciatic nerve by the amyloid precursor protein (APP) and other antiproteases. Neuroscience Letters, 1992, 144, 130-134.	2.1	58
287	Amphiphilic behavior of a brain tetrameric acetylcholinesterase form lacking the plasma membrane anchoring domain. Brain Research, 1992, 580, 1-5.	2.2	8

Isolation of proteoglycans synthesized by rat heart: Evidence for the presence of several distinct
0.7 3

#	Article	IF	CITATIONS
289	Sulfation is required for mobility of veliger larvae ofConcholepas concholepas (Mollusca;) Tj ETQq1 1 0.784314 r	gBT /Over 1.4	lock 10 Tf 50
290	A high molecular weight proteoglycan is differentially expressed during development of the molluscConcholepas concholepas (Mollusca; Gastropoda; Muricidae). The Journal of Experimental Zoology, 1992, 264, 363-371.	1.4	5
291	Binding of Asymmetric (Al2) Acetylcholinesterase to C2 Muscle Cells and to Cho Mutants Defective in Glycosaminoglycan Synthesis. , 1992, , 25-32.		3
292	A comparison of the Xenopus laevis oocyte acetylcholinesterase with the muscle and brain enzyme suggests variations at the post-translational level. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1991, 98, 299-305.	0.2	3
293	Increase of macromolecule synthesis after hatching of Concholepas concholepas veliger larvae: Effect of sulfate in the synthesis of proteoglycans. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 96, 613-619.	0.2	0
294	Proteoglycan production in Drosophila egg development: Effect of β-d-xyloside on proteoglycan synthesis and larvae motility. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 97, 307-314.	0.2	9
295	Carrageenans solubilize asymmetric acetylcholinesterase from nicotinic cholinergic synapses. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1990, 96, 77-81.	0.2	0
296	Association of Acetylcholinesterase with the cell surface. Journal of Membrane Biology, 1990, 118, 1-9.	2.1	41
297	Neurotransmitter-related enzyme acetylcholinesterase in juveniles ofConcholepas concholepas (Mollusca; gastropoda; muricidae). The Journal of Experimental Zoology, 1990, 255, 1-8.	1.4	6
298	Dermatan sulfate and de-sulfated heparin solubilized collagen-tailed acetylcholinesterase from the rat neuromuscular junction. Brain Research, 1990, 529, 91-95.	2.2	8
299	A simple assay to estimate the acetylcholinesterase molecular forms in crude extracts of rat skeletal muscle. Analytical Biochemistry, 1989, 180, 227-230.	2.4	3
300	Distribution and anchoring of molecular forms of acetylcholinesterase. Trends in Pharmacological Sciences, 1989, 10, 325-329.	8.7	56
301	Axons grow in the aging rat but fast transport and acetylcholinesterase content remain unchanged. Brain Research, 1988, 441, 331-338.	2.2	21
302	A membrane-associated dimer of acetylcholinesterase from Xenopus skeletal muscle is solubilized by phosphatidylinositol-specific phospholipase C. Neuroscience Letters, 1988, 90, 186-190.	2.1	29
303	Changes in contralateral synaptic acetylcholinesterase following motor nerve section in rats. Neuroscience Letters, 1988, 90, 229-233.	2.1	5
304	The sensory projections ofDrosophila mutants which show abnormal wing formation or flying behavior. Brain Research, 1987, 416, 248-256.	2.2	4
305	Co-solubilization of asymmetric acetylcholinesterase and dermatan sulfate proteoglycan from the extracellular matrix of rat skeletal muscles. FEBS Letters, 1987, 213, 159-163.	2.8	23
306	Biosynthesis of the neurofilament heavy subunit in Xenopus oocytes microinjected with rat brain poly(A)+ RNA. Molecular Biology Reports, 1987, 12, 265-271.	2.3	5

#	Article	IF	CITATIONS
307	Isolation of the heparan sulfate proteoglycans from the extracellular matrix of rat skeletal muscle. Journal of Neurobiology, 1987, 18, 271-282.	3.6	46
308	Interaction of heparin with multimolecular aggregates of acetylcholinesterase. Cellular and Molecular Neurobiology, 1985, 5, 303-309.	3.3	11
309	Atypical Distribution of Asymmetric Acetylcholinesterase in Mutant PC12 Pheochromocytoma Cells Lacking a Cell Surface Heparan Sulfate Proteoglycan. Journal of Neurochemistry, 1985, 45, 86-94.	3.9	28
310	Membrane-Bound Form of Acetylcholinesterase Activated during Postnatal Development of the Rat Somatosensory Cortex. Developmental Neuroscience, 1985, 7, 120-132.	2.0	15
311	Age-Related Responses of Skeletal Muscle After Ectopic Innervation, with Particular Reference to 16S Acetylcholinesterase, in Adult Rats. Journal of Neurochemistry, 1984, 43, 375-381.	3.9	1
312	The electric organ ofDiscopyge tschudii: Its innervated face and the biology of acetylcholinesterase. Cellular and Molecular Neurobiology, 1984, 4, 125-142.	3.3	14
313	Subcellular localization of acetycholinesterase molecular forms in endplate regions of adult mammalian skeletal muscle. Neurochemical Research, 1984, 9, 1211-1230.	3.3	41
314	Acetylcholinesterase is functional in embryonic rat muscle before its accumulation at the sites of nerve-muscle contact. Developmental Biology, 1984, 103, 369-377.	2.0	21
315	Increase of muscle peroxisomal enzymes and myotonia induced by nafenopin, a hypolipidemic drug. Muscle and Nerve, 1983, 6, 154-159.	2.2	12
316	The A12 acetylcholinesterase and polypeptide composition of electric organ basal lamina of electrophorus and some torpedinae fishes. Cell Biochemistry and Function, 1983, 1, 41-48.	2.9	13
317	Heparin solubilizes asymmetric acetylcholinesterase from rat neuromuscular junction. FEBS Letters, 1983, 154, 265-268.	2.8	47
318	Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells. Cell, 1982, 29, 71-79.	28.9	100
319	Differentiation of skeletal muscle cells in culture Cell Structure and Function, 1982, 7, 91-109.	1.1	18
320	Gangliosides and sialoglycoproteins in normal and denervated rat diaphragm muscle. Muscle and Nerve, 1982, 5, 33-38.	2.2	9
321	Aneural muscle cell cultures make synaptic basal lamina components. Nature, 1982, 295, 143-145.	27.8	71
322	Acetylcholinesterase aggregates in a newly formed motor nerve-smooth muscle junction. Brain Research Bulletin, 1981, 7, 17-24.	3.0	3
323	Purification of the peroxisomal fatty acyl-CoA oxidase from rat liver. Biochemical and Biophysical Research Communications, 1980, 95, 7-12.	2.1	49
324	Acetylcholinesterase like that of skeletal muscle in smooth muscle reinnervated by a motor nerve. Nature, 1979, 280, 504-506.	27.8	37

#	Article	IF	CITATIONS
325	Fatty acid oxidation by human liver peroxisomes. Biochemical and Biophysical Research Communications, 1979, 88, 1030-1036.	2.1	201
326	Properties of fatty acyl-CoA oxidase from rat liver, a peroxisomal flavoprotein. Life Sciences, 1979, 25, 1127-1135.	4.3	24
327	Is there a correspondence between half-lives of motor endplate acetylcholinesterase and junctional acetylcholine receptors?. Neuroscience Letters, 1977, 5, 91-93.	2.1	2
328	Role of axoplasmic transport in neurotrophic regulation of muscle end plate acetylcholinesterase. Nature, 1976, 262, 55-56.	27.8	60
329	Glycogen Synthase Kinase 3β (GSK-3β) a Key Signaling Enzyme: A Developmental Neurobiological Perspective. , 0, , 25-43.		1
330	Comprehensive Overview of Alzheimer's Disease Neurodegeneration, from Amyloid-β to Neuroinflammatory Modulation. , 0, , .		0