Luc Duong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8673952/publications.pdf

Version: 2024-02-01

687220 610775 49 674 13 24 h-index citations g-index papers 49 49 49 835 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomedical Optics Express, 2017, 8, 1203.	1.5	103
2	Three-Dimensional Classification of Spinal Deformities Using Fuzzy Clustering. Spine, 2006, 31, 923-930.	1.0	60
3	Characterization of coronary artery pathological formations from OCT imaging using deep learning. Biomedical Optics Express, 2018, 9, 4936.	1.5	51
4	3-D reconstruction of the coronary artery tree from multiple views of a rotational X-ray angiography. International Journal of Cardiovascular Imaging, 2010, 26, 733-749.	0.7	50
5	Reliability of the Spinal Deformity Study Group Classification of Lumbosacral Spondylolisthesis. Spine, 2012, 37, E95-E102.	1.0	41
6	Realâ€time biomechanics using the finite element method and machine learning: Review and perspective. Medical Physics, 2021, 48, 7-18.	1.6	39
7	Vessel Walker: Coronary arteries segmentation using random walks and hessian-based vesselness filter., 2013,,.		29
8	Semi-supervised generative adversarial networks for the segmentation of the left ventricle in pediatric MRI. Computers in Biology and Medicine, 2020, 123, 103884.	3.9	29
9	Automatic Detection of Scoliotic Curves in Posteroanterior Radiographs. IEEE Transactions on Biomedical Engineering, 2010, 57, 1143-1151.	2.5	28
10	Prediction of spinal curve progression in Adolescent Idiopathic Scoliosis using Random Forest regression. Computers in Biology and Medicine, 2018, 103, 34-43.	3.9	27
11	Three-dimensional Subclassification of Lenke Type 1 Scoliotic Curves. Journal of Spinal Disorders and Techniques, 2009, 22, 135-143.	1.8	25
12	CycleGAN for style transfer in X-ray angiography. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1785-1794.	1.7	22
13	Interobserver and Intraobserver Variability in the Identification of the Lenke Classification Lumbar Modifier in Adolescent Idiopathic Scoliosis. Journal of Spinal Disorders and Techniques, 2009, 22, 448-455.	1.8	17
14	An automatic diagnostic system of coronary artery lesions in Kawasaki disease using intravascular optical coherence tomography imaging. Journal of Biophotonics, 2020, 13, e201900112.	1,1	16
15	Assessment of Sacral Doming in Lumbosacral Spondylolisthesis. Spine, 2007, 32, 1888-1895.	1.0	13
16	A graph-based approach for spatio-temporal segmentation of coronary arteries in X-ray angiographic sequences. Computers in Biology and Medicine, 2016, 79, 45-58.	3.9	13
17	Curve-based 2D-3D registration of coronary vessels for image guided procedure. Proceedings of SPIE, 2009, , .	0.8	12
18	A deep learningâ€based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography Âimages. Medical Physics, 2021, 48, 3511-3524.	1.6	12

#	Article	IF	Citations
19	Personalized stent design for congenital heart defects using pulsatile blood flow simulations. Journal of Biomechanics, 2018, 81, 68-75.	0.9	9
20	Real time noninvasive assessment of external trunk geometry during surgical correction of adolescent idiopathic scoliosis. Scoliosis, 2009, 4, 5.	0.4	8
21	Atlas-based segmentation of brain magnetic resonance imaging using random walks. , 2012, , .		6
22	A new adaptive framework for tubular structures segmentation in X-ray angiography., 2012,,.		6
23	Dynamic ensemble selection of learner-descriptor classifiers to assess curve types in adolescent idiopathic scoliosis. Medical and Biological Engineering and Computing, 2018, 56, 2221-2231.	1.6	6
24	Convolutional Neural Networks for Automatic Risser Stage Assessment. Radiology: Artificial Intelligence, 2020, 2, e180063.	3.0	5
25	Stochastic 3D Motion Compensation of Coronary Arteries from Monoplane Angiograms. Lecture Notes in Computer Science, 2012, 15, 651-658.	1.0	5
26	Hierarchical segmentation and tracking of coronary arteries in 2D X-ray Angiography sequences. , 2015, , .		4
27	Automatic evaluation of vessel diameter variation from 2D X-ray angiography. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 1867-1876.	1.7	4
28	Semi-automatic segmentation of major aorto-pulmonary collateral arteries (MAPCAs) for image guided procedures. Proceedings of SPIE, 2010, , .	0.8	3
29	Multi scale classification approach for coronary artery detection from X-ray angiography. , 2012, , .		3
30	3D reconstruction of vascular structures using graph-based voxel coloring., 2017,,.		3
31	Design of heart phantoms for ultrasound imaging of ventricular septal defects. International Journal of Computer Assisted Radiology and Surgery, 2021, , $1.$	1.7	3
32	Towards Segmentation of Pedicles on Posteroanterior X-Ray Views of Scoliotic Patients. Lecture Notes in Computer Science, 2007, , 1028-1039.	1.0	3
33	Towards an automatic classification of spinal curves from x-ray images. Studies in Health Technology and Informatics, 2006, 123, 419-24.	0.2	3
34	Image segmentation using random-walks on the histogram. , 2012, , .		2
35	Online C-arm calibration using a marked guide wire for 3D reconstruction of pulmonary arteries. , $2017, , .$		2
36	A freehand ultrasound framework for spine assessment in 3D: a preliminary study., 2020, 2020, 2096-2100.		2

#	Article	IF	CITATIONS
37	Intravascular imaging of coronary artery: Bridging the gap between clinical needs and technical advances. Medical Engineering and Physics, 2021, 96, 71-80.	0.8	2
38	A new technique for intraoperative analysis of trunk geometry in adolescent idiopathic scoliosis. Canadian Journal of Surgery, 2002, 45, 219-23.	0.5	2
39	Generative learning approach for radiation dose reduction in Xâ€ray guided cardiac interventions. Medical Physics, 2022, 49, 4071-4081.	1.6	2
40	Intensity-based 3D/2D registration for percutaneous intervention of major aorto-pulmonary collateral arteries. Proceedings of SPIE, 2012, , .	0.8	1
41	Model-free Cardiorespiratory Motion Prediction from X-ray Angiography Sequence with LSTM Network. , 2019, 2019, 7014-7018.		1
42	Intra-Slice Motion Correction of Intravascular OCT Images Using Deep Features. IEEE Journal of Biomedical and Health Informatics, 2019, 23, 931-941.	3.9	1
43	Automatic bone maturity grading from EOS radiographs in Adolescent Idiopathic Scoliosis. Computers in Biology and Medicine, 2021, 136, 104681.	3.9	1
44	Intensity-based hierarchical clustering in CT-scans: application to interactive segmentation in cardiology. Proceedings of SPIE, 2011 , , .	0.8	0
45	Combining Laplacian eigenmaps and vesselness filters for vessel segmentation in X-ray angiography. , 2012, , .		0
46	Classification of coronary artery tissues using optical coherence tomography imaging in Kawasaki disease. Proceedings of SPIE, 2016, , .	0.8	0
47	Epistemic Uncertainty Modeling for Vessel Segmentation. , 2019, 2019, 5923-5927.		0
48	Left Ventricle Wall Detection from Ultrasound Images Using Shape and Appearance Information. Lecture Notes in Computer Science, 2017, , 63-70.	1.0	0
49	Characterization of blood-mimicking fluids for echocardiography imaging of ventricular septal defects. International Journal of Computer Assisted Radiology and Surgery, 0, , .	1.7	0