Joan W Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8673856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews, 2012, 26, 73-83.	4.7	383
2	Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biology and Biotechnology, 2016, 3, 7.	5.1	221
3	Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?. Toxins, 2015, 7, 3785-3804.	3.4	109
4	MIDDAS-M: Motif-Independent De Novo Detection of Secondary Metabolite Gene Clusters through the Integration of Genome Sequencing and Transcriptome Data. PLoS ONE, 2013, 8, e84028.	2.5	106
5	Genome Sequence of Aspergillus flavus NRRL 3357, a Strain That Causes Aflatoxin Contamination of Food and Feed. Genome Announcements, 2015, 3, .	0.8	96
6	<i>Trichoderma</i> Volatile Organic Compounds as a Biofumigation Tool against Late Blight Pathogen <i>Phytophthora infestans</i> in Postharvest Potato Tubers. Journal of Agricultural and Food Chemistry, 2020, 68, 8163-8171.	5.2	59
7	Fungal Volatile Organic Compounds: More Than Just a Funky Smell?. Annual Review of Microbiology, 2020, 74, 101-116.	7.3	58
8	A common fungal volatile organic compound induces a nitric oxide mediated inflammatory response in Drosophila melanogaster. Scientific Reports, 2014, 4, 3833.	3.3	42
9	The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on <i>Arabidopsis thaliana</i> . Mycology, 2014, 5, 73-80.	4.4	41
10	Proteomics of methyl jasmonate induced defense response in maize leaves against Asian corn borer. BMC Genomics, 2015, 16, 224.	2.8	39
11	Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana. AMB Express, 2014, 4, 53.	3.0	37
12	Characterization of Blue Mold Penicillium Species Isolated from Stored Fruits Using Multiple Highly Conserved Loci. Journal of Fungi (Basel, Switzerland), 2017, 3, 12.	3.5	33
13	Effects of Three Volatile Oxylipins on Colony Development in Two Species of Fungi and on Drosophila Larval Metamorphosis. Current Microbiology, 2015, 71, 347-356.	2.2	29
14	Integrated Metabolomics and Morphogenesis Reveal Volatile Signaling of the Nematode-Trapping Fungus Arthrobotrys oligospora. Applied and Environmental Microbiology, 2018, 84, .	3.1	24
15	Draft Genome Sequence of Penicillium expansum Strain R19, Which Causes Postharvest Decay of Apple Fruit. Genome Announcements, 2014, 2, .	0.8	22
16	Arabidopsis thaliana for testing the phytotoxicity of volatile organic compounds. Plant Growth Regulation, 2014, 74, 177-186.	3.4	19
17	Genome Sequence of Penicillium solitum RS1, Which Causes Postharvest Apple Decay. Genome Announcements, 2016, 4, .	0.8	16
18	Whole-genome comparisons of <i>Penicillium</i> spp. reveals secondary metabolic gene clusters and candidate genes associated with fungal aggressiveness during apple fruit decay. PeerJ, 2019, 7, e6170.	2.0	16

JOAN W BENNETT

#	Article	IF	CITATIONS
19	China's fungal genomics initiative: a whitepaper. Mycology, 2010, 1, 1-8.	4.4	14
20	Two volatile-phase alcohols inhibit growth of <i>Pseudogymnoascus destructans</i> , causative agent of white-nose syndrome in bats. Mycology, 2017, 8, 11-16.	4.4	13
21	Eight-carbon volatiles: prominent fungal and plant interaction compounds. Journal of Experimental Botany, 2022, 73, 487-497.	4.8	12
22	<i>Arabidopsis thaliana</i> as Bioindicator of Fungal VOCs in Indoor Air. Mycobiology, 2016, 44, 162-170.	1.7	11
23	Pseudogymnoascus destructans: Causative Agent of White-Nose Syndrome in Bats Is Inhibited by Safe Volatile Organic Compounds. Journal of Fungi (Basel, Switzerland), 2018, 4, 48.	3.5	11
24	Volatile 1-octen-3-ol increases patulin production by Penicillium expansum on a patulin-suppressing medium. Mycotoxin Research, 2019, 35, 329-340.	2.3	11
25	Genome sequence and comparative analyses of atoxigenic <i>Aspergillus flavus</i> WRRL 1519. Mycologia, 2018, 110, 482-493.	1.9	10
26	Aspergillus flavus NRRL 35739, a Poor Biocontrol Agent, May Have Increased Relative Expression of Stress Response Genes. Journal of Fungi (Basel, Switzerland), 2019, 5, 53.	3.5	10
27	Influence of R and S enantiomers of 1-octen-3-ol on gene expression of Penicillium chrysogenum. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 977-991.	3.0	10
28	Drosophila melanogasteras a Model for StudyingAspergillus fumigatus. Mycobiology, 2017, 45, 233-239.	1.7	9
29	Tour of Truffles: Aromas, Aphrodisiacs, Adaptogens, and More. Mycobiology, 2021, 49, 201-212.	1.7	8
30	Silver linings: a personal memoir about Hurricane Katrina and fungal volatiles. Frontiers in Microbiology, 2015, 6, 206.	3.5	7
31	Draft Genome Sequence of the Fungus <i>Penicillium solitum</i> NJ1. Genome Announcements, 2016, 4,	0.8	6
32	Biocontrol strain Aspergillus flavus WRRL 1519 has differences in chromosomal organization and an increased number of transposon-like elements compared to other strains. Molecular Genetics and Genomics, 2018, 293, 1507-1522.	2.1	6
33	Identifying candidate Aspergillus pathogenicity factors by annotation frequency. BMC Microbiology, 2020, 20, 342.	3.3	6
34	Genomic Analyses of Penicillium Species Have Revealed Patulin and Citrinin Gene Clusters and Novel Loci Involved in Oxylipin Production. Journal of Fungi (Basel, Switzerland), 2021, 7, 743.	3.5	6
35	New Names for Three Penicillium Strains Based on Updated Barcoding and Phylogenetic Analyses. Microbiology Resource Announcements, 2021, 10, e0046621.	0.6	5
36	Genome Sequencing and Analysis of the Filamentous Fungus Penicillium sclerotiorum 113, Isolated after Hurricane Sandy. Genome Announcements, 2016, 4, .	0.8	4

JOAN W BENNETT

#	Article	IF	CITATIONS
37	Genome Sequencing and Analysis of the Postharvest Fungus <i>Penicillium expansum</i> R21. Genome Announcements, 2017, 5, .	0.8	4
38	Transcriptomic analysis in Anemone flaccida rhizomes reveals ancillary pathway for triterpene saponins biosynthesis and differential responsiveness to phytohormones. Chinese Journal of Natural Medicines, 2019, 17, 131-144.	1.3	4
39	Eightâ€carbon volatiles are more toxic to wildâ€type <i>Drosophila melanogaster</i> than to flies with blocked immune system mutations. Entomologia Experimentalis Et Applicata, 2021, 169, 1092-1102.	1.4	4
40	Trans-2-hexenal downregulates several pathogenicity genes of Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats. Journal of Industrial Microbiology and Biotechnology, 2021, , .	3.0	2
41	An Aroma Odyssey: The Promise of Volatile Fungal Metabolites in Biotechnology. Grand Challenges in Biology and Biotechnology, 2020, , 349-368.	2.4	2
42	Inoculation, Growth and Bactericidal Effects of Three Kombucha Cultures. Microbiology Research, 2022, 13, 128-136.	1.9	2
43	Introduction and Commentaries for the Special Issue: "Arnold L. Demain - a Life Lived― Journal of Industrial Microbiology and Biotechnology, 2021, , .	3.0	1
44	History and Importance to Human Affairs. , 0, , 1-7.		0