Nelson Spruston

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8673777/nelson-spruston-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

93	10,029	47	100
papers	citations	h-index	g-index
121	11,850 ext. citations	14.5	6.6
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
93	Hippocampal and thalamic afferents form distinct synaptic microcircuits in the mouse infralimbic frontal cortex. <i>Cell Reports</i> , 2021 , 37, 109837	10.6	О
92	Rapid synaptic plasticity contributes to a learned conjunctive code of position and choice-related information in the hippocampus. <i>Neuron</i> , 2021 ,	13.9	5
91	Bursting potentiates the neuro-Al connection. <i>Nature Neuroscience</i> , 2021 , 24, 905-906	25.5	O
90	A Sparse, Spatially Biased Subtype of Mature Granule Cell Dominates Recruitment in Hippocampal-Associated Behaviors. <i>Cell Reports</i> , 2020 , 31, 107551	10.6	25
89	Transcriptional corepressor SIN3A regulates hippocampal synaptic plasticity via Homer1/mGluR5 signaling. <i>JCI Insight</i> , 2020 , 5,	9.9	7
88	Membrane potential dynamics underlying context-dependent sensory responses in the hippocampus. <i>Nature Neuroscience</i> , 2020 , 23, 881-891	25.5	18
87	Linking axon morphology to gene expression: a strategy for neuronal cell-type classification. <i>Current Opinion in Neurobiology</i> , 2020 , 65, 70-76	7.6	3
86	Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization of Long-Range Connectivity in the Mouse Brain. <i>Cell</i> , 2019 , 179, 268-281.e13	56.2	167
85	ShuTu: Open-Source Software for Efficient and Accurate Reconstruction of Dendritic Morphology. <i>Frontiers in Neuroinformatics</i> , 2019 , 13, 68	3.9	6
84	Mapping the transcriptional diversity of genetically and anatomically defined cell populations in the mouse brain. <i>ELife</i> , 2019 , 8,	8.9	32
83	Functional clustering of dendritic activity during decision-making. ELife, 2019, 8,	8.9	38
82	Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. <i>Nature Reviews Neuroscience</i> , 2019 , 20, 193-204	13.5	83
81	Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell Classes. <i>Cell</i> , 2018 , 173, 1280-1292.e18	56.2	97
80	Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites. <i>Nature Neuroscience</i> , 2018 , 21, 353-363	25.5	53
79	Persistent Sodium Current Mediates the Steep Voltage Dependence of Spatial Coding in Hippocampal Pyramidal Neurons. <i>Neuron</i> , 2018 , 99, 147-162.e8	13.9	23
78	A novel pyramidal cell type promotes sharp-wave synchronization in the hippocampus. <i>Nature Neuroscience</i> , 2018 , 21, 985-995	25.5	34
77	The subiculum is a patchwork of discrete subregions. <i>ELife</i> , 2018 , 7,	8.9	38

(2013-2018)

76	Astrocytes integrate and drive action potential firing in inhibitory subnetworks. <i>Nature Communications</i> , 2018 , 9, 4336	17.4	47
75	Integrating Results across Methodologies Is Essential for Producing Robust Neuronal Taxonomies. <i>Neuron</i> , 2017 , 94, 747-751.e1	13.9	13
74	Illuminating the Neuronal Architecture Underlying Context in Fear Memory. Cell, 2016, 167, 888-889	56.2	2
73	To the Cloud! A Grassroots Proposal to Accelerate Brain Science Discovery. <i>Neuron</i> , 2016 , 92, 622-627	13.9	34
72	Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons. <i>Journal of Neurophysiology</i> , 2016 , 116, 466-71	3.2	21
71	Spatial Gene-Expression Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons. <i>Neuron</i> , 2016 , 89, 351-68	13.9	174
70	Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells. <i>Neuron</i> , 2016 , 89, 1016-30	13.9	74
69	Author response: Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons 2016 ,		3
68	Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. <i>ELife</i> , 2016 , 5, e14997	8.9	210
67	Principles of dendritic integration 2016 , 351-398		10
67 66	Principles of dendritic integration 2016 , 351-398 BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. <i>Neuron</i> , 2015 , 87, 252-6	13.9	10
	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. <i>Neuron</i> , 2015 ,	13.9	147
66	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. <i>Neuron</i> , 2015 , 87, 252-6		147
66	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. <i>Neuron</i> , 2015 , 87, 252-6 Dendritic integration: 60 years of progress. <i>Nature Neuroscience</i> , 2015 , 18, 1713-21 Age-dependent changes in intrinsic neuronal excitability in subiculum after status epilepticus. <i>PLoS</i>	25.5	147 237
666564	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. <i>Neuron</i> , 2015 , 87, 252-6 Dendritic integration: 60 years of progress. <i>Nature Neuroscience</i> , 2015 , 18, 1713-21 Age-dependent changes in intrinsic neuronal excitability in subiculum after status epilepticus. <i>PLoS ONE</i> , 2015 , 10, e0119411 Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal	25.5 3·7	147237450
66656463	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. <i>Neuron</i> , 2015 , 87, 252-6 Dendritic integration: 60 years of progress. <i>Nature Neuroscience</i> , 2015 , 18, 1713-21 Age-dependent changes in intrinsic neuronal excitability in subiculum after status epilepticus. <i>PLoS ONE</i> , 2015 , 10, e0119411 Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. <i>ELife</i> , 2015 , 4,	25.5 3.7 8.9	147237450
6665646362	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. <i>Neuron</i> , 2015 , 87, 252-6 Dendritic integration: 60 years of progress. <i>Nature Neuroscience</i> , 2015 , 18, 1713-21 Age-dependent changes in intrinsic neuronal excitability in subiculum after status epilepticus. <i>PLoS ONE</i> , 2015 , 10, e0119411 Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. <i>ELife</i> , 2015 , 4, Assembling cell ensembles. <i>Cell</i> , 2014 , 157, 1502-4 Balanced synaptic impact via distance-dependent synapse distribution and complementary	25.5 3.7 8.9 56.2	147 237 4 50
666564636261	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. <i>Neuron</i> , 2015 , 87, 252-6 Dendritic integration: 60 years of progress. <i>Nature Neuroscience</i> , 2015 , 18, 1713-21 Age-dependent changes in intrinsic neuronal excitability in subiculum after status epilepticus. <i>PLoS ONE</i> , 2015 , 10, e0119411 Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons. <i>ELife</i> , 2015 , 4, Assembling cell ensembles. <i>Cell</i> , 2014 , 157, 1502-4 Balanced synaptic impact via distance-dependent synapse distribution and complementary expression of AMPARs and NMDARs in hippocampal dendrites. <i>Neuron</i> , 2013 , 80, 1451-63 Mechanisms of retroaxonal barrage firing in hippocampal interneurons. <i>Journal of Physiology</i> , 2013 ,	25.5 3.7 8.9 56.2	147 237 4 50 1

58	Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. <i>Hippocampus</i> , 2012 , 22, 693-706	3.5	62
57	Synaptic amplification by dendritic spines enhances input cooperativity. <i>Nature</i> , 2012 , 491, 599-602	50.4	178
56	Synergistic actions of metabotropic acetylcholine and glutamate receptors on the excitability of hippocampal CA1 pyramidal neurons. <i>Journal of Neuroscience</i> , 2012 , 32, 6081-91	6.6	29
55	Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors. <i>Neuron</i> , 2012 , 76, 776-89	13.9	122
54	Slow integration leads to persistent action potential firing in distal axons of coupled interneurons. <i>Nature Neuroscience</i> , 2011 , 14, 200-7	25.5	90
53	Questions about STDP as a General Model of Synaptic Plasticity. <i>Frontiers in Synaptic Neuroscience</i> , 2010 , 2, 140	3.5	61
52	A post-burst after depolarization is mediated by group i metabotropic glutamate receptor-dependent upregulation of Ca(v)2.3 R-type calcium channels in CA1 pyramidal neurons. <i>PLoS Biology</i> , 2010 , 8, e1000534	9.7	35
51	Synaptic depolarization is more effective than back-propagating action potentials during induction of associative long-term potentiation in hippocampal pyramidal neurons. <i>Journal of Neuroscience</i> , 2009 , 29, 3233-41	6.6	48
50	A state-mutating genetic algorithm to design ion-channel models. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 16829-34	11.5	34
49	Plasticity of burst firing induced by synergistic activation of metabotropic glutamate and acetylcholine receptors. <i>Neuron</i> , 2009 , 61, 287-300	13.9	32
48	Synapse distribution suggests a two-stage model of dendritic integration in CA1 pyramidal neurons. <i>Neuron</i> , 2009 , 63, 171-7	13.9	117
47	Pyramidal neuron. <i>Scholarpedia Journal</i> , 2009 , 4, 6130	1.5	8
46	Pyramidal neurons: dendritic structure and synaptic integration. <i>Nature Reviews Neuroscience</i> , 2008 , 9, 206-21	13.5	1082
45	Compartmental neural simulations with spatial adaptivity. <i>Journal of Computational Neuroscience</i> , 2008 , 25, 465-80	1.4	8
44	Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus. Journal of Comparative Neurology, 2008 , 506, 535-47	3.4	89
43	Stability and plasticity of intrinsic membrane properties in hippocampal CA1 pyramidal neurons: effects of internal anions. <i>Journal of Physiology</i> , 2007 , 578, 799-818	3.9	58
42	Dendritic D-type potassium currents inhibit the spike afterdepolarization in rat hippocampal CA1 pyramidal neurons. <i>Journal of Physiology</i> , 2007 , 581, 175-87	3.9	49
41	Coincidence detection of place and temporal context in a network model of spiking hippocampal neurons. <i>PLoS Computational Biology</i> , 2007 , 3, e234	5	26

(2001-2007)

40	Dendritic spikes induce single-burst long-term potentiation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 17192-7	11.5	116
39	Dendritic integration 2007 , 350-399		5
38	Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. <i>Neuron</i> , 2006 , 50, 431-42	13.9	148
37	Dendritic patch-clamp recording. <i>Nature Protocols</i> , 2006 , 1, 1235-47	18.8	123
36	Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. <i>Nature Neuroscience</i> , 2005 , 8, 839-41	25.5	190
35	Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. <i>Nature Neuroscience</i> , 2005 , 8, 1667-76	25.5	211
34	Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. <i>Journal of Physiology</i> , 2005 , 568, 69-82	3.9	155
33	Output-mode transitions are controlled by prolonged inactivation of sodium channels in pyramidal neurons of subiculum. <i>PLoS Biology</i> , 2005 , 3, e175	9.7	31
32	R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons. <i>Journal of Neuroscience</i> , 2005 , 25, 5763-73	6.6	141
31	Coincidence Detection of Place and Temporal Context in a Network Model of Spiking Hippocampal Neurons. <i>PLoS Computational Biology</i> , 2005 , preprint, e234	5	
30	Psychostimulant-induced plasticity of intrinsic neuronal excitability in ventral subiculum. <i>Journal of Neuroscience</i> , 2003 , 23, 9937-46	6.6	34
29	Branching out: a new idea for dendritic function. Focus on "Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern". <i>Journal of Neurophysiology</i> , 2003 , 89, 2887-8	3.2	2
28	Intracellular correlate of EPSP-spike potentiation in CA1 pyramidal neurons is controlled by GABAergic modulation. <i>Hippocampus</i> , 2003 , 13, 801-5	3.5	55
27	Dendritic spikes as a mechanism for cooperative long-term potentiation. <i>Nature</i> , 2002 , 418, 326-31	50.4	485
26	Serotonin receptor activation inhibits sodium current and dendritic excitability in prefrontal cortex via a protein kinase C-dependent mechanism. <i>Journal of Neuroscience</i> , 2002 , 22, 6846-55	6.6	138
25	Axonal gap junctions send ripples through the hippocampus. <i>Neuron</i> , 2001 , 31, 669-71	13.9	10
24	Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. <i>Journal of Neurophysiology</i> , 2001 , 86, 2998-3010	3.2	146
23	Action potential bursting in subicular pyramidal neurons is driven by a calcium tail current. <i>Journal of Neuroscience</i> , 2001 , 21, 3312-21	6.6	100

22	Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. Journal of Neurophysiology, 2000 , 84, 2398-408	3.2	163
21	Diversity and dynamics of dendritic signaling. <i>Science</i> , 2000 , 290, 739-44	33.3	599
20	Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons. <i>Journal of Neuroscience</i> , 1999 , 19, 8789-98	6.6	256
19	Slow sodium channel inactivation in CA1 pyramidal cells. <i>Annals of the New York Academy of Sciences</i> , 1999 , 868, 97-101	6.5	13
18	Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons. <i>Biophysical Journal</i> , 1999 , 76, 846-60	2.9	113
17	Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. <i>Progress in Neurobiology</i> , 1998 , 55, 563-75	10.9	135
16	Changes in dendritic structure and function following hippocampal lesions: correlations with developmental events?. <i>Progress in Neurobiology</i> , 1998 , 55, 641-50	10.9	17
15	Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. <i>Neuron</i> , 1998 , 21, 1189-200	13.9	304
14	Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. <i>Journal of Neuroscience</i> , 1998 , 18, 3501-10	6.6	404
13	Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. <i>Journal of Neurophysiology</i> , 1998 , 79, 1518-34	3.2	110
12	Action potential initiation and backpropagation in neurons of the mammalian CNS. <i>Trends in Neurosciences</i> , 1997 , 20, 125-31	13.3	579
11	Prolonged sodium channel inactivation contributes to dendritic action potential attenuation in hippocampal pyramidal neurons. <i>Journal of Neuroscience</i> , 1997 , 17, 6639-46	6.6	191
10	Interneurons in the stratum lucidum of the rat hippocampus: An anatomical and electrophysiological characterization 1997 , 385, 427-440		46
9	Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. <i>Science</i> , 1995 , 268, 297-300	33.3	680
8	Probing dendritic function with patch pipettes. Current Opinion in Neurobiology, 1995, 5, 389-94	7.6	23
7	Mechanisms shaping glutamate-mediated excitatory postsynaptic currents in the CNS. <i>Current Opinion in Neurobiology</i> , 1994 , 4, 366-72	7.6	139
6	Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties. <i>Trends in Neurosciences</i> , 1994 , 17, 161-6	13.3	230
5	ShuTu: Open-Source Software for Efficient and Accurate Reconstruction of Dendritic Morphology		1

LIST OF PUBLICATIONS

4	Functional clustering of dendritic activity during decision-making	5
3	Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain	3
2	Synaptic mechanisms of context-dependent sensory responses in the hippocampus	2
1	A sparse, spatially biased subtype of mature granule cell is preferentially recruited in hippocampal-associated behaviors	2