Simon Clavaguera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8673753/publications.pdf

Version: 2024-02-01

759233 642732 25 793 12 23 citations h-index g-index papers 26 26 26 1532 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environment International, 2015, 77, 132-147.	10.0	342
2	Airborne engineered nanomaterials in the workplace—a review of release and worker exposure during nanomaterial production and handling processes. Journal of Hazardous Materials, 2017, 322, 17-28.	12.4	108
3	Review of measurement techniques and methods for assessing personal exposure to airborne nanomaterials in workplaces. Science of the Total Environment, 2017, 603-604, 793-806.	8.0	69
4	An Efficient Route to Stable Room-Temperature Liquid-Crystalline Triphenylenes. European Journal of Organic Chemistry, 2006, 2006, 2889-2893.	2.4	37
5	Inter-comparison of personal monitors for nanoparticles exposure at workplaces and in the environment. Science of the Total Environment, 2017, 605-606, 929-945.	8.0	34
6	Subâ€ppm Detection of Nerve Agents Using Chemically Functionalized Silicon Nanoribbon Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2010, 49, 4063-4066.	13.8	32
7	Unexpected De-Arylation of a Pentaaryl Fullerene. Organic Letters, 2009, 11, 1389-1391.	4.6	24
8	Comparison of fluorescence and QCM technologies: Example of explosives detection with a π-conjugated thin film. Talanta, 2010, 82, 1397-1402.	5 . 5	21
9	High Gain and Fast Detection of Warfare Agents Using Back-Gated Silicon-Nanowired MOSFETs. IEEE Electron Device Letters, 2011, 32, 976-978.	3.9	21
10	Chemical functionalization of electrodes for detection of gaseous nerve agents with carbon nanotube field-effect transistors. Chemical Communications, 2011, 47, 6048.	4.1	18
11	Development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors. Talanta, 2011, 85, 2542-2545.	5. 5	14
12	Efficient Sensing of Explosives by Using Fluorescent Nonporous Films of Oligophenyleneethynylene Derivatives Thanks to Optimal Structure Orientation and Exciton Migration. Chemistry - A European Journal, 2014, 20, 15069-15076.	3.3	13
13	In Vitro Dermal Safety Assessment of Silver Nanowires after Acute Exposure: Tissue vs. Cell Models. Nanomaterials, 2018, 8, 232.	4.1	12
14	Alternated Ï€â€conjugated polymers based on a 1,2â€diiminocyclohexane chiral unit for nitroaromatics sensing. Journal of Polymer Science Part A, 2009, 47, 4141-4149.	2.3	10
15	Towards the development of safer by design TiO ₂ -based photocatalytic paint: impacts and performances. Environmental Science: Nano, 2021, 8, 758-772.	4.3	9
16	Assessment of exposure to airborne carbon nanotubes by laser-induced breakdown spectroscopy analysis of filter samples. Journal of Analytical Atomic Spectrometry, 2017, 32, 1868-1877.	3.0	7
17	The SERENADE project; a step forward in the safe by design process of nanomaterials: The benefits of a diverse and interdisciplinary approach. Nano Today, 2021, 37, 101065.	11.9	7
18	Functionalization of Silicon Nanowires for Specific Sensing. ECS Transactions, 2011, 35, 313-318.	0.5	3

#	Article	IF	Citations
19	Measurement Methods for Nanoparticles in Indoor and Outdoor Air. Handbook of Environmental Chemistry, 2015, , 19-49.	0.4	3
20	Assessment of personal exposure to airborne nanomaterials: Evaluation of a novel sampler. Journal of Physics: Conference Series, 2017, 838, 012006.	0.4	3
21	A nanomaterial release model for waste shredding using a Bayesian belief network. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	2
22	TCAD study of the detection mechanisms in silicon nanoribbon-based gas sensors. , 2011, , .		1
23	New Chemically Functionalized Nanomaterials for Electrical Nerve Agents Sensors. Journal of Physics: Conference Series, 2011, 307, 012008.	0.4	1
24	Comparative study of commercial home air cleaners. IOP Conference Series: Materials Science and Engineering, 2019, 609, 042076.	0.6	1
25	The SERENADE project – A step forward in the Safe by Design process of nanomaterials: Moving towards a product-oriented approach. Nano Today, 2021, 39, 101238.	11.9	1