Wilson Machado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8673644/publications.pdf Version: 2024-02-01

MUSON MACHADO

#	Article	IF	CITATIONS
1	Environmental changes in Sepetiba Bay, SE Brazil. Regional Environmental Change, 2004, 4, 17-27.	1.4	118
2	Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophysical Research Letters, 2014, 41, 2475-2480.	1.5	117
3	Mercury, zinc, and copper accumulation in mangrove sediments surrounding a large landfill in southeast Brazil. Environmental Pollution, 2002, 120, 455-461.	3.7	114
4	Trace metal retention in mangrove ecosystems in Guanabara Bay, SE Brazil. Marine Pollution Bulletin, 2002, 44, 1277-1280.	2.3	95
5	Trace metals in mangrove seedlings: role of iron plaque formation. Wetlands Ecology and Management, 2005, 13, 199-206.	0.7	84
6	Tracing of anthropogenic zinc sources in coastal environments using stable isotope composition. Chemical Geology, 2017, 449, 226-235.	1.4	83
7	An environmental overview of Guanabara Bay, Rio de Janeiro. Regional Studies in Marine Science, 2016, 8, 319-330.	0.4	71
8	Reactive sulfides relationship with metals in sediments from an eutrophicated estuary in Southeast Brazil. Marine Pollution Bulletin, 2004, 49, 89-92.	2.3	62
9	Mercury contents in aquatic macrophytes from two reservoirs in the ParaÃba do Sul: Guandú river system, SE Brazil. Brazilian Journal of Biology, 2006, 66, 101-107.	0.4	62
10	Eutrophication history of Guanabara Bay (SE Brazil) recorded by phosphorus flux to sediments from a degraded mangrove area. Marine Pollution Bulletin, 2009, 58, 1750-1754.	2.3	55
11	Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality. Environmental Earth Sciences, 2012, 65, 1661-1669.	1.3	55
12	Changes in organic carbon accumulation driven by mangrove expansion and deforestation in a New Zealand estuary. Estuarine, Coastal and Shelf Science, 2017, 192, 108-116.	0.9	54
13	Mercury deposition through litterfall in an Atlantic Forest at Ilha Grande, Southeast Brazil. Chemosphere, 2006, 65, 2477-2484.	4.2	52
14	Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil. Anais Da Academia Brasileira De Ciencias, 2014, 86, 539-554.	0.3	52
15	Variabilidade espacial e sazonal da concentração de elementos-traço em sedimentos do sistema estuarino de Santos-Cubatão (SP). Quimica Nova, 2006, 29, 256-263.	0.3	46
16	Geochemical fractionation of metals and semimetals in surface sediments from tropical impacted estuary (Guanabara Bay, Brazil). Environmental Earth Sciences, 2015, 74, 1363-1378.	1.3	42
17	Multi-elemental contamination and historic record in sediments from the Santos-Cubatão Estuarine System, Brazil. Journal of the Brazilian Chemical Society, 2008, 19, 1490-1500.	0.6	39
18	Sediment metal enrichment and ecological risk assessment of ten ports and estuaries in the World Harbours Project. Marine Pollution Bulletin, 2020, 155, 111129.	2.3	38

#	Article	IF	CITATIONS
19	Relation of Reactive Sulfides with Organic Carbon, Iron, and Manganese in Anaerobic Mangrove Sediments: Implications for Sediment Suitability to Trap Trace Metals. Journal of Coastal Research, 2008, 4, 25-32.	0.1	37
20	Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes. Marine Pollution Bulletin, 2014, 79, 365-370.	2.3	35
21	Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland. Environmental Pollution, 2016, 213, 30-35.	3.7	35
22	Assessing man-induced environmental changes in the Sepetiba Bay (Southeastern Brazil) with geochemical and satellite data. Comptes Rendus - Geoscience, 2017, 349, 290-298.	0.4	35
23	Mercury Accumulation in Sediments of a Mangrove Ecosystem in SE Brazil. Water, Air, and Soil Pollution, 2003, 145, 67-77.	1.1	34
24	A critical examination of the possible application of zinc stable isotope ratios in bivalve mollusks and suspended particulate matter to trace zinc pollution in a tropical estuary. Environmental Pollution, 2017, 226, 41-47.	3.7	32
25	Zinc isotopes as tracers of anthropogenic sources and biogeochemical processes in contaminated mangroves. Applied Geochemistry, 2018, 95, 25-32.	1.4	31
26	Contaminant Metal Behaviour During Re-suspension of Sulphidic Estuarine Sediments. Water, Air, and Soil Pollution, 2007, 181, 193-200.	1.1	30
27	Sediment quality in a metal-contaminated tropical bay assessed with a multiple lines of evidence approach. Environmental Pollution, 2017, 228, 265-276.	3.7	30
28	Mercury accumulation in sediments along an eutrophication gradient in Guanabara Bay, southeast Brazil. Journal of the Brazilian Chemical Society, 2008, 19, 569-575.	0.6	29
29	Relation of acid-volatile sulfides (AVS) with metals in sediments from eutrophicated estuaries: Is it limited by metal-to-AVS ratios?. Journal of Soils and Sediments, 2010, 10, 1606-1610.	1.5	29
30	Rare Earth Element and Radionuclide Distribution in Surface Sediments Along an Estuarine System Affected by Fertilizer Industry Contamination. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	26
31	Carbon accumulation and storage capacity in mangrove sediments three decades after deforestation within a eutrophic bay. Marine Pollution Bulletin, 2018, 126, 275-280.	2.3	26
32	Behavior of metallurgical zinc contamination in coastal environments: A survey of Zn from electroplating wastes and partitioning in sediments. Science of the Total Environment, 2020, 743, 140610.	3.9	26
33	Carbon and nutrient accumulation in tropical mangrove creeks, Amazon region. Marine Geology, 2020, 429, 106317.	0.9	25
34	Evaluation of Cu potential bioavailability changes upon coastal sediment resuspension: an example on how to improve the assessment of sediment dredging environmental risks. Environmental Science and Pollution Research, 2011, 18, 1033-1036.	2.7	22
35	Shrimp farming influence on carbon and nutrient accumulation within Peruvian mangroves sediments. Estuarine, Coastal and Shelf Science, 2020, 243, 106879.	0.9	22
36	Using a tiered approach based on ecotoxicological techniques to assess the ecological risks of contamination in a subtropical estuarine protected area. Science of the Total Environment, 2016, 544, 564-573.	3.9	21

#	Article	IF	CITATIONS
37	Evaluation of the bioaccumulation kinetics of toxic metals in fish (A. brasiliensis) and its application on monitoring of coastal ecosystems. Marine Pollution Bulletin, 2020, 151, 110830.	2.3	21
38	Online Chemistry Education Challenges for Rio de Janeiro Students during the COVID-19 Pandemic. Journal of Chemical Education, 2020, 97, 3396-3399.	1.1	20
39	Carbon and nutrient accumulation in mangrove sediments affected by multiple environmental changes. Journal of Soils and Sediments, 2020, 20, 2504-2509.	1.5	20
40	Early diagenesis of sulfur in a tropical upwelling system, Cabo Frio, southeastern Brazil. Geology, 2012, 40, 879-882.	2.0	19
41	Mercury, zinc, manganese, and iron accumulation in leachate pond sediments from a refuse tip in Southeastern Brazil. Microchemical Journal, 2006, 82, 196-200.	2.3	17
42	Changes in Cd and Zn bioavailability upon an experimental resuspension of highly contaminated coastal sediments from a tropical estuary. Sustainable Water Resources Management, 2015, 1, 335-342.	1.0	17
43	Nutrient regeneration susceptibility under contrasting sedimentary conditions from the Rio de Janeiro coast, Brazil. Marine Pollution Bulletin, 2016, 108, 297-302.	2.3	17
44	Integrating multiple lines of evidence of sediment quality in a tropical bay (Guanabara Bay, Brazil). Marine Pollution Bulletin, 2019, 146, 925-934.	2.3	16
45	Changes in Cd and Zn distribution in sediments after closure of an electroplating industry, Sepetiba bay, Brazil. Marine Pollution Bulletin, 2020, 161, 111758.	2.3	16
46	Trace metal dynamics in an industrialized Brazilian river: A combined application of Zn isotopes, geochemical partitioning, and multivariate statistics. Journal of Environmental Sciences, 2021, 101, 313-325.	3.2	16
47	Coupled anthropogenic anomalies of radionuclides and major elements in estuarine sediments. Journal of Environmental Radioactivity, 2008, 99, 1329-1334.	0.9	15
48	Biogeochemical factors controlling arsenic distribution in a densely populated tropical estuary (Guanabara Bay, RJ, Brazil). Environmental Earth Sciences, 2017, 76, 1.	1.3	14
49	Hypersaline tidal flats as important "blue carbon―systems: a case study from three ecosystems. Biogeosciences, 2021, 18, 2527-2538.	1.3	14
50	Distribuição espacial de ferro, cobre e chumbo em sedimentos de manguezal em um gradiente de degradação na BaÃa de Guanabara (Estado do Rio de Janeiro). Quimica Nova, 2007, 30, 66-69.	0.3	13
51	Selenium, Chromium and Cobalt Diffusion into Mangrove Sediments: Radiotracer Experiment Evidence of Coupled Effects of Bioturbation and Rhizosphere. Water, Air, and Soil Pollution, 2012, 223, 3887-3892.	1.1	13
52	Increase in the bioavailability of trace metals after sediment resuspension. SN Applied Sciences, 2019, 1, 1.	1.5	13
53	Removal of Zinc from Tidal Water by Sediments of a Mangrove Ecosystem: A Radiotracer Study. Water, Air, and Soil Pollution, 2008, 192, 77-83.	1.1	11
54	Nutrient behavior in a highly-eutrophicated tropical estuarine system. Acta Limnologica Brasiliensia, 2016, 28, .	0.4	11

#	Article	IF	CITATIONS
55	Ion Exchange Chromatography and Mass Bias Correction for Accurate and Precise Zn Isotope Ratio Measurements in Environmental Reference Materials by MC-ICP-MS. Journal of the Brazilian Chemical Society, 2016, , .	0.6	10
56	Anthropogenic and environmental influences on nutrient accumulation in mangrove sediments. Marine Pollution Bulletin, 2021, 165, 112174.	2.3	10
57	Seasonal changes in metal and nutrient fluxes across the sediment-water interface in tropical mangrove creeks in the Amazon region. Applied Geochemistry, 2022, 138, 105217.	1.4	10
58	Radiotracer estimates of benthic activity effects on trace metal diffusion into mangrove sediments. Marine Environmental Research, 2013, 83, 96-100.	1.1	8
59	Spatial variability and seasonal toxicity of dredged sediments from Guanabara Bay (Rio de Janeiro,) Tj ETQq1 1 0 34496-34509.	.784314 rg 2.7	gBT /Overlock 8
60	Metal-Associated Biomarker Responses in Crabs from a Marine Protected Area in Southeastern Brazil. Archives of Environmental Contamination and Toxicology, 2020, 78, 463-477.	2.1	8
61	Arsenic contamination in widely consumed Caribbean sharpnose sharks in southeastern Brazil: Baseline data and concerns regarding fisheries resources. Marine Pollution Bulletin, 2021, 172, 112905.	2.3	8
62	Geochemistry of intertidal sediment pore waters from the industrialized Santos-Cubatão Estuarine System, SE Brazil. Anais Da Academia Brasileira De Ciencias, 2012, 84, 427-442.	0.3	7
63	Trace metal bioavailability in sediments from a reference site, Ribeira Bay, Brazil. Marine Pollution Bulletin, 2016, 106, 395-399.	2.3	7
64	Dredging impact on trace metal behavior in a polluted estuary: a discussion about sampling design. Brazilian Journal of Oceanography, 0, 67, .	0.6	7
65	Iron biogeochemistry in Holocene palaeo and actual salt marshes in coastal areas of the Pampean Plain, Argentina. Environmental Earth Sciences, 2016, 75, 1.	1.3	6
66	The COVID-19 Pandemic: Living in the Anthropocene. Revista Virtual De Quimica, 2020, 12, 901-912.	0.1	6
67	Anthropogenic source assessment of 226Ra and 210Pb in a sediment core from the Cubatão River estuary (SE Brazil). Journal of Radioanalytical and Nuclear Chemistry, 2011, 287, 729-732.	0.7	5
68	Cesium, manganese and cobalt water–sediment transfer kinetics and diffusion into mangrove sediments inferred by radiotracer experiments. Journal of Radioanalytical and Nuclear Chemistry, 2012, 292, 349-353.	0.7	5
69	Evaluation of contaminants spreading from sludge piles, applying geochemical fractionation and attenuation of concentrations model in a tropical reservoir. Environmental Monitoring and Assessment, 2019, 191, 426.	1.3	5
70	The new Meghalayan Age: What does it Imply for the Anthropocene Age?. Revista Virtual De Quimica, 2018, 10, 1648-1658.	0.1	4
71	BALANÇO DO MERCÚRIO NUMA LAGOA COSTEIRA HIPERTRÓFICA (LAGOA RODRIGO DE FREITAS, RIO DE) Tj	ETQq1 1 C).784314 rgB
72	Removal efficiency of 75Se, 51Cr and 60Co from tidal water by mangrove sediments from Sepetiba Bay	0.7	3

(SE Brazil). Journal of Radioanalytical and Nuclear Chemistry, 2014, 299, 357-361.

#	Article	IF	CITATIONS
73	Kinetics of trace metal removal from tidal water by mangrove sediments under different redox conditions. Radiation Physics and Chemistry, 2014, 95, 336-338.	1.4	3
74	Mercury distribution in water masses of the South Atlantic Ocean (24°S to 20°S), Brazilian Exclusive Economic Zone. Marine Pollution Bulletin, 2022, 176, 113425.	2.3	3
75	METAL SORPTION BY SEDIMENTS FROM A MANGROVE REFORESTATION AREA IN GUANABARA BAY (SE BRAZIL) REVEALED BY USING RADIOTRACERS. Journal of Sedimentary Environments, 2016, 1, .	0.7	2
76	Sedimentary trace element sinks in a tropical upwelling system. Journal of Soils and Sediments, 2018, 18, 287-296.	1.5	2
77	LEAD SOURCE ASSESSMENT BY ISOTOPIC AND ELEMENTARY COMPOSITION IN THE TRANSITION FROM PRISTINE TO POLLUTED CONDITION OF COASTAL SEDIMENTS / AVALIAÇÃFO DAS FONTES DE PB PELAS COMPOSIÇÕES ISOTÓPICAS E ELEMENTARES DE SEDIMENTOS COSTEIROS NA TRANSIÇÃFO DE CONDIÇÕES NATURALS DADA POLLUÃDAS Lournal of Sadimentary Environmento 2018, 2, 46, 52	0.7	2
78	ANTURAIS PARA POLUADAS, Journal of Sedimentary Environments, 2018, 3, 49-55, ANTHROPOGENIC FACTORS DRIVING PHOSPHORUS CONTENTS IN SALTO GRANDE RESERVOIR SEDIMENTS, SÃFO PAULO STATE (SE BRAZIL) / INFLUÊNCIA ANTROPOGÊNICA NAS CONCENTRAÇÕES DE FÓSFORO DOS SEDIMENTOS DO RESERVATÓRIO DE SALTO GRANDE, ESTADO DE SÃFO PAULO (SE BRASIL). Journal of Sedimentary Environments, 2018, 3, 166-175.	0.7	2
79	Electrochemical characterization of mangrove sediments: A proposal of new proxies for organic matter oxidation. Applied Geochemistry, 2019, 101, 42-49.	1.4	2
80	Metal Bioaccumulation by the Neotropical Clam Anomalocardia flexuosa to Estimate the Quality of Estuarine Sediments. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 106-113.	1.3	2
81	Metal Bioavailability in Contaminated Estuarine Sediments from a Highly-Impacted Tropical Bay. Revista Virtual De Quimica, 2017, 9, 2007-2016.	0.1	2
82	Mangrove sediments as long-term mercury sinks: Evidence from millennial to decadal time scales. Marine Pollution Bulletin, 2021, 173, 113031.	2.3	2
83	Assinatura da deposição atmosférica de testes nucleares em sedimentos da costa brasileira (240+239Pu) Tj E	TQq1 1 0	.784314 rgl
84	Influence of biological activity on 65Zn and 109Cd removal from tidal water by chronically-polluted mangrove sediments. Journal of Radioanalytical and Nuclear Chemistry, 2018, 316, 429-434.	0.7	1
85	O programa cientÃfico do Antropoceno. Estudos Avancados, 2021, 35, 289-294.	0.2	1
86	Evaluation of the Applicability of Aquatic Pollution Indices: A Case Study in Paraibuna River (Juiz de) Tj ETQq0 0 0 r	gBT /Over 0.1	lqck 10 Tf 5
87	FATORES QUE AFETAM A BIODISPONIBILIDADE DE CONTAMINANTES METALICOS EM SEDIMENTOS SUPERFICIAIS DA BAÃA DE SEPETIBA, RIO DE JANEIRO, BRASIL. , 0, , 43-57.		1
88	RADIONUCLÃĐEOS COMO MARCADORES DE UM NOVO TEMPO: O ANTROPOCENO. Quimica Nova, 0, , .	0.3	1
89	SPREADING EUTROPHICATION AND CHANGING CO2 FLUXES IN THE TROPICAL COASTAL OCEAN: A FEW LESSONS FROM RIO DE JANEIRO. Arquivos De Ciências Do Mar, 2022, 55, 461-476.	0.1	1
90	A influência antrópica na qualidade da água do rio Tapajós, na cidade de Santarém-PA. Revista Brasileira De Geografia Fisica, 2021, 14, 3695-3710.	0.0	1

#	Article	IF	CITATIONS
91	Removal of Zn and Cd from Overlying Water by Mangrove Sediments: Testing the Effects of Sediment Resuspension/Redeposition Events. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	0
92	Radiotracers as a Tool to Elucidate Trace Element Behaviour in the Water–Sediment Interface. , 2015, , 101-113.		0
93	Environmental Chemistry: Analysis of Speciation, Processes and Transformations in Nature. Revista Virtual De Quimica, 2017, 9, 1799-1799.	0.1	0
94	Evaluation of the Geochemical Behavior and Environmental Risk of Metals in an Area Impacted by Industrial Waste in Queimados (RJ). Revista Virtual De Quimica, 2017, 9, 2151-2176.	0.1	0
95	METAL CORRELATIONS IN A RECIPROCAL MUSSELS TRANSPLANTATION: INDICATION OF PHYSIOLOGICAL RESPONSES AND BIOAVAILABILITY CONTRASTS. , 0, , 88-103.		0
96	Would the Contaminated Areas of Rio de Janeiro State a Legacy of the Great Acceleration in the Anthropocene?. Revista Virtual De Quimica, 2020, 12, 775-794.	0.1	0
97	POTENTIAL MOBILITY AND TOXICITY RISK OF METAL POLLUTANTS IN SOILS FROM A TROPICAL AREA AFFECTED BY INDUSTRIAL WASTES. , 0, , .		0
98	POTENCIAL TÓXICO DE SEDIMENTOS DRAGADOS DAS BAÃAS DE SEPETIBA E DA GUANABARA (RJ) EM CENÃRIO DE DISPOSIÇÃO EM LATOSSOLO. Geociencias, 2020, 39, 1141-1151.	0.1	0
99	Evaluation of the Generation of Technofossils by Different Coffee Brewing Methods During COVID-19 Pandemic. Revista Virtual De Quimica, 0, , .	0.1	0
100	Organic Matter Redox State Driven by Specific Sources in Mangrove Sediments: A Case Study from Peruvian Ecosystems. Journal of Marine Science and Engineering, 2021, 9, 1438.	1.2	0
101	Didactic Strategy for the Teaching of Isotope Mixing Models for Stable Isotopes Relevant to Biogeochemistry Based on the Analogy with Color Composition. Journal of Chemical Education, 2022, 99, 2610-2619.	1.1	0