
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8673380/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO2 Gasification Reactivity and Syngas Production of Greek Lignite Coal and Ex-Situ Produced Chars under Non-Isothermal and Isothermal Conditions: Structure-Performance Relationships. Energies, 2022, 15, 679.	3.1	2
2	Facile Synthesis of Unsupported Pd Aerogel for High Performance Formic Acid Microfluidic Fuel Cell. Materials, 2022, 15, 1422.	2.9	7
3	Whey as a sustainable binder for the production of extruded activated carbon. Journal of Environmental Chemical Engineering, 2022, 10, 107590.	6.7	4
4	Tortuosity of the porous structure of carbon gels. Carbon, 2021, 171, 921-930.	10.3	10
5	Effect of the porosity and microstructure on the mechanical properties of organic xerogels. Journal of Materials Science, 2021, 56, 10312-10325.	3.7	8
6	3-D structured porous carbons with virtually any shape from whey powders. Carbon, 2021, 175, 403-412.	10.3	8
7	MOLDABLE AND MACHINABLE POROUS CARBON STRUCTURES OBTAINED FROM WHEY. Dyna (Spain), 2021, 96, 422-428.	0.2	1
8	Whey-Derived Porous Carbon Scaffolds for Bone Tissue Engineering. Biomedicines, 2021, 9, 1091.	3.2	9
9	Ultralightâ€Weight Graphene Aerogels with Extremely High Electrical Conductivity. Small, 2021, 17, e2103407.	10.0	17
10	Effect of porous structure on doping and the catalytic performance of carbon xerogels towards the oxygen reduction reaction. Microporous and Mesoporous Materials, 2020, 293, 109811.	4.4	16
11	Graphitized Carbon Xerogels for Lithium-Ion Batteries. Materials, 2020, 13, 119.	2.9	5
12	Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels. Chemical Engineering Journal, 2020, 402, 126276.	12.7	19
13	Effect of Olive Kernel thermal treatment (torrefaction vs. slow pyrolysis) on the physicochemical characteristics and the CO2 or H2O gasification performance of as-prepared biochars. International Journal of Hydrogen Energy, 2020, , .	7.1	27
14	Production of H2-Rich Syngas From Lignocellulosic Biomass Using Microwave-Assisted Pyrolysis Coupled With Activated Carbon Enabled Reforming. Frontiers in Chemistry, 2020, 8, 3.	3.6	36
15	The relevance of conductive additive addition methodology for optimizing the performance of electrodes based on carbon xerogels in aqueous supercapacitors. Journal of Electroanalytical Chemistry, 2019, 836, 45-49.	3.8	7
16	Multiphase graphitisation of carbon xerogels and its dependence on their pore size. Carbon, 2019, 152, 704-714.	10.3	14
17	Organic and Carbon Gels. Advances in Sol-gel Derived Materials and Technologies, 2019, , .	0.2	15
18	Properties of Carbon Aerogels and Their Organic Precursors. Advances in Sol-gel Derived Materials and Technologies, 2019, , 87-121.	0.2	3

#	Article	IF	CITATIONS
19	Fitting Carbon Gels and Composites for Environmental Processes. Advances in Sol-gel Derived Materials and Technologies, 2019, , 123-147.	0.2	0
20	Organic and Carbon Gels: From Laboratory to Industry?. Advances in Sol-gel Derived Materials and Technologies, 2019, , 1-26.	0.2	1
21	Organic and Carbon Gels Derived from Biosourced Polyphenols. Advances in Sol-gel Derived Materials and Technologies, 2019, , 27-85.	0.2	2
22	Carbon Gels for Electrochemical Applications. Advances in Sol-gel Derived Materials and Technologies, 2019, , 149-189.	0.2	1
23	The synergistic catalyst-carbonates effect on the direct bituminous coal fuel cell performance. International Journal of Hydrogen Energy, 2019, 44, 10033-10042.	7.1	8
24	The role of conductive additives on the performance of hybrid carbon xerogels as electrodes in aqueous supercapacitors. Electrochimica Acta, 2019, 295, 693-702.	5.2	18
25	The combined impact of carbon type and catalyst-aided gasification process on the performance of a Direct Carbon Solid Oxide Fuel Cell. Solid State Ionics, 2018, 317, 268-275.	2.7	8
26	Performance of carbon xerogel-graphene hybrids as electrodes in aqueous supercapacitors. Electrochimica Acta, 2018, 276, 28-36.	5.2	26
27	Load-dependent surface diffusion model for analyzing the kinetics of protein adsorption onto mesoporous materials. Journal of Colloid and Interface Science, 2018, 511, 27-38.	9.4	16
28	Determinant influence of the electrical conductivity versus surface area on the performance of graphene oxide-doped carbon xerogel supercapacitors. Carbon, 2018, 126, 456-463.	10.3	30
29	Carbon Xerogels: The Bespoke Nanoporous Carbons. , 2018, , .		2
30	Carbon xerogels graphitized by microwave heating as anode materials in lithium-ion batteries. Carbon, 2018, 137, 384-394.	10.3	37
31	Electrical Charge Distribution on Carbon Surfaces as a Function of the pH and Point of Zero Charge. An Approximate Solution. Research & Development in Material Science, 2018, 8, .	0.1	1
32	Exploring the potential of resorcinol-formaldehyde xerogels as thermal insulators. Microporous and Mesoporous Materials, 2017, 244, 50-54.	4.4	24
33	Carbon Gels and Their Applications: A Review of Patents. , 2017, , 25-52.		8
34	On the desiccant capacity of the mesoporous RF-xerogels. Microporous and Mesoporous Materials, 2017, 248, 1-6.	4.4	6
35	Protein adsorption and activity on carbon xerogels with narrow pore size distributions covering a wide mesoporous range. Carbon, 2017, 118, 743-751.	10.3	12
36	Microporous carbon spheres derived from resorcinol-formaldehyde solutions. A new approach to coat supports. Microporous and Mesoporous Materials, 2017, 252, 154-160.	4.4	12

#	Article	IF	CITATIONS
37	Superhydrophobic and breathable resorcinol-formaldehyde Xerogels. Journal of Non-Crystalline Solids, 2017, 471, 202-208.	3.1	11
38	Graphene-doped carbon xerogel combining high electrical conductivity and surface area for optimized aqueous supercapacitors. Carbon, 2017, 118, 291-298.	10.3	58
39	Synthesis of hydrophobic resorcinol–formaldehyde xerogels by grafting with silanes. Reactive and Functional Polymers, 2017, 120, 92-97.	4.1	7
40	Acid-based resorcinol-formaldehyde xerogels synthesized by microwave heating. Journal of Sol-Gel Science and Technology, 2017, 84, 60-69.	2.4	18
41	An underrated variable essential for tailoring the structure of xerogel: the methanol content of commercial formaldehyde solutions. Journal of Sol-Gel Science and Technology, 2017, 83, 478-488.	2.4	9
42	Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in <i>Rhodospirillum rubrum</i> . Microbial Biotechnology, 2017, 10, 1412-1417.	4.2	29
43	Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production. Bioresource Technology, 2016, 218, 687-691.	9.6	23
44	A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Microporous and Mesoporous Materials, 2016, 223, 89-93.	4.4	40
45	Ecotoxicity tests on solid residues from microwave induced pyrolysis of different organic residues: An addendum. Journal of Analytical and Applied Pyrolysis, 2016, 121, 329-332.	5.5	6
46	Influence of alkaline compounds on the porosity of resorcinol-formaldehyde xerogels. Journal of Non-Crystalline Solids, 2016, 452, 286-290.	3.1	13
47	Aqueous and organic inks of carbon xerogels as models for studying the role of porosity in lithium-ion battery electrodes. Materials and Design, 2016, 109, 282-288.	7.0	22
48	Desiccant capability of organic xerogels: Surface chemistry vs porous texture. Microporous and Mesoporous Materials, 2016, 232, 70-76.	4.4	22
49	Dielectric characterization of biodegradable wastes during pyrolysis. Fuel, 2016, 172, 146-152.	6.4	31
50	Advances in tailoring the porosity of tannin-based carbon xerogels. Industrial Crops and Products, 2016, 82, 100-106.	5.2	26
51	Effect of fuel thermal pretreament on the electrochemical performance of a direct lignite coal fuel cell. Solid State Ionics, 2016, 288, 140-146.	2.7	14
52	Selectivity matters: Graphene oxide-mediated oxidative coupling of benzylamine to Nâ€'benzylidine-1-phenylmethanamine under microwave irradiation. Journal of Molecular Catalysis A, 2015, 406, 19-22.	4.8	12
53	Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup. International Journal of Hydrogen Energy, 2015, 40, 1945-1958.	7.1	15
54	Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics. Journal of Analytical and Applied Pyrolysis, 2015, 111, 55-63.	5.5	35

#	Article	IF	CITATIONS
55	Direct utilization of lignite coal in a Co–CeO 2 /YSZ/Ag solid oxide fuel cell. International Journal of Hydrogen Energy, 2015, 40, 14353-14363.	7.1	21
56	The enhancement of porosity of carbon xerogels by using additives. Microporous and Mesoporous Materials, 2015, 217, 39-45.	4.4	9
57	Oil fractions from the pyrolysis of diverse organic wastes: The different effects of conventional and microwave induced pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 114, 256-264.	5.5	17
58	Towards a feasible and scalable production of bio-xerogels. Journal of Colloid and Interface Science, 2015, 456, 138-144.	9.4	15
59	Energy consumption estimation in the scaling-up of microwave heating processes. Chemical Engineering and Processing: Process Intensification, 2015, 95, 1-8.	3.6	84
60	Effect of methanol content in commercial formaldehyde solutions on the porosity of RF carbon xerogels. Journal of Non-Crystalline Solids, 2015, 426, 13-18.	3.1	21
61	Graphene oxide-catalysed oxidation reaction of unsaturated compounds under microwave irradiation. Catalysis Communications, 2015, 72, 133-137.	3.3	12
62	Influence of carrier gas on microwave-induced pyrolysis. Journal of Analytical and Applied Pyrolysis, 2015, 113, 153-157.	5.5	11
63	Simultaneous adjustment of the main chemical variables to fine-tune the porosity of carbon xerogels. Carbon, 2014, 78, 490-499.	10.3	50
64	Integrated microwave drying, pyrolysis and gasification for valorisation of organic wastes to syngas. Fuel, 2014, 132, 20-26.	6.4	43
65	Optimization of the process variables in the microwave-induced synthesis of carbon xerogels. Journal of Sol-Gel Science and Technology, 2014, 69, 488-497.	2.4	26
66	Effect of unequal load of carbon xerogel in electrodes on the electrochemical performance of asymmetric supercapacitors. Journal of Applied Electrochemistry, 2014, 44, 481-489.	2.9	11
67	Optimization of microalgae oil extraction under ultrasound and microwave irradiation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1779-1784.	3.2	72
68	RF xerogels with tailored porosity over the entire nanoscale. Microporous and Mesoporous Materials, 2014, 195, 266-275.	4.4	60
69	The effect of the carbon surface chemistry and electrolyte pH on the energy storage of supercapacitors. RSC Advances, 2014, 4, 32398-32404.	3.6	45
70	An electrical conductivity translator for carbons. Measurement: Journal of the International Measurement Confederation, 2014, 56, 215-218.	5.0	27
71	Effect of carbon type on the performance of a direct or hybrid carbon solid oxide fuel cell. RSC Advances, 2014, 4, 18792-18800.	3.6	42
72	Microwave-induced low temperature pyrolysis of macroalgae for unprecedented hydrogen-enriched syngas production. RSC Advances, 2014, 4, 38144-38151.	3.6	20

#	Article	IF	CITATIONS
73	New concept for energy storage: Microwave-induced carbon gasification with CO2. Energy Conversion and Management, 2014, 78, 559-564.	9.2	48
74	Influence of the microwave absorbent and moisture content on the microwave pyrolysis of an organic municipal solid waste. Journal of Analytical and Applied Pyrolysis, 2014, 105, 234-240.	5.5	57
75	Molienda asistida con microondas de un coque metalúrgico. Revista De Metalurgia, 2014, 50, e013.	0.5	0
76	Microwave pyrolysis of microalgae for high syngas production. Bioresource Technology, 2013, 144, 240-246.	9.6	134
77	New process for producing methanol from coke oven gas by means of CO2 reforming. Comparison with conventional process. Fuel Processing Technology, 2013, 115, 215-221.	7.2	54
78	Continuous flow nanocatalysis: reaction pathways in the conversion of levulinic acid to valuable chemicals. Green Chemistry, 2013, 15, 2786.	9.0	70
79	Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel. Journal of Power Sources, 2013, 241, 776-782.	7.8	68
80	Optimizing the performance of supercapacitors based on carbon electrodes and protic ionic liquids as electrolytes. Electrochimica Acta, 2013, 108, 361-368.	5.2	49
81	Carbonisation of resorcinol–formaldehyde organic xerogels: Effect of temperature, particle size and heating rate on the porosity of carbon xerogels. Journal of Analytical and Applied Pyrolysis, 2013, 100, 111-116.	5.5	60
82	An overview of novel technologies to valorise coke oven gas surplus. Fuel Processing Technology, 2013, 110, 150-159.	7.2	116
83	Microwave synthesis of micro-mesoporous activated carbon xerogels for high performance supercapacitors. Microporous and Mesoporous Materials, 2013, 168, 206-212.	4.4	63
84	Microwave-assisted pyrolysis of biomass feedstocks: the way forward?. Energy and Environmental Science, 2012, 5, 5481-5488.	30.8	234
85	Equilibrium prediction of CO2 reforming of coke oven gas: Suitability for methanol production. Chemical Engineering Science, 2012, 82, 95-103.	3.8	42
86	Mixtures of Steel-Making Slag and Carbons as Catalyst for Microwave-Assisted Dry Reforming of CH4. Chinese Journal of Catalysis, 2012, 33, 1115-1118.	14.0	13
87	Carbon xerogels as electrochemical supercapacitors. Relation between impedance physicochemical parameters and electrochemical behaviour. International Journal of Hydrogen Energy, 2012, 37, 10249-10255.	7.1	10
88	High energy ultracapacitor based on carbon xerogel electrodes and sodium sulfate electrolyte. Journal of Power Sources, 2012, 214, 137-141.	7.8	21
89	Effect of H2S on carbon-catalyzed methane decomposition and CO2 reforming reactions. International Journal of Hydrogen Energy, 2012, 37, 14187-14194.	7.1	37
90	Pulses of microwave radiation to improve coke grindability. Fuel, 2012, 102, 65-71.	6.4	27

#	Article	IF	CITATIONS
91	The Basicity of Carbons. , 2012, , 173-203.		12
92	Electrochemical behavior and capacitance properties of carbon xerogel/multiwalled carbon nanotubes composites. Journal of Solid State Electrochemistry, 2012, 16, 1067-1076.	2.5	13
93	A microwave-based method for the synthesis of carbon xerogel spheres. Carbon, 2012, 50, 3555-3560.	10.3	17
94	CO2 reforming of coke oven gas over a Ni/γAl2O3 catalyst to produce syngas for methanol synthesis. Fuel, 2012, 94, 197-203.	6.4	89
95	Study of energy consumption in a laboratory pilot plant for the microwave-assisted CO2 reforming of CH4. Fuel Processing Technology, 2012, 95, 55-61.	7.2	44
96	Low temperature regeneration of activated carbons using microwaves: Revising conventional wisdom. Journal of Environmental Management, 2012, 102, 134-140.	7.8	61
97	Syngas from CO2 reforming of coke oven gas: Synergetic effect of activated carbon/Ni–γAl2O3 catalyst. International Journal of Hydrogen Energy, 2011, 36, 13361-13368.	7.1	32
98	Mixtures of carbon and Ni/Al2O3 as catalysts for the microwave-assisted CO2 reforming of CH4. Fuel Processing Technology, 2011, 92, 1531-1536.	7.2	60
99	Carbon Materials as Catalysts for Decomposition and CO2 Reforming of Methane: A Review. Chinese Journal of Catalysis, 2011, 32, 207-216.	14.0	85
100	Ball lightning plasma and plasma arc formation during the microwave heating of carbons. Carbon, 2011, 49, 346-349.	10.3	139
101	Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes. Journal of Analytical and Applied Pyrolysis, 2011, 91, 316-322.	5.5	121
102	Fast microwave-assisted synthesis of tailored mesoporous carbon xerogels. Journal of Colloid and Interface Science, 2011, 357, 541-547.	9.4	62
103	Comparative study of conventional and microwave-assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst. Journal of Analytical and Applied Pyrolysis, 2010, 88, 155-159.	5.5	73
104	Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis. Applied Surface Science, 2010, 256, 2569-2576.	6.1	70
105	Leaching zinc from spent catalyst: Process optimization using response surface methodology. Journal of Hazardous Materials, 2010, 176, 1113-1117.	12.4	40
106	Effect of temperature on the properties of ZnO/activated carbon composites from spent catalysts containing zinc acetate. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41, 617-621.	5.3	6
107	Dry reforming of coke oven gases over activated carbon to produce syngas for methanol synthesis. Fuel, 2010, 89, 2897-2902.	6.4	102
108	Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO2 reforming of CH4. Fuel, 2010, 89, 4002-4007.	6.4	40

#	Article	IF	CITATIONS
109	Microwave heating processes involving carbon materials. Fuel Processing Technology, 2010, 91, 1-8.	7.2	833
110	Synthesis of carbon-supported nickel catalysts for the dry reforming of CH4. Fuel Processing Technology, 2010, 91, 765-769.	7.2	56
111	Ni-doped carbon xerogels for H2 storage. Carbon, 2010, 48, 2722-2733.	10.3	47
112	Synergetic effect of a mixture of activated carbon+Ni/Al2O3 used as catalysts for the CO2 reforming of CH4. Applied Catalysis A: General, 2010, 390, 78-83.	4.3	48
113	Precise determination of the point of sol–gel transition in carbon gel synthesis using a microwave heating method. Carbon, 2010, 48, 3305-3308.	10.3	17
114	Ni-Doped Carbons as a Carbon Support for Metal Hydride Electrodes. Energy & Fuels, 2010, 24, 3302-3306.	5.1	6
115	Exploring New Routes in the Synthesis of Carbon Xerogels for Their Application in Electric Double-Layer Capacitors. Energy & Fuels, 2010, 24, 3334-3339.	5.1	52
116	Microwave-assisted synthesis of CuO/ZnO and CuO/ZnO/Al2O3 precursors using urea hydrolysis. Solid State Ionics, 2009, 180, 1372-1378.	2.7	24
117	Pyrolysis of glycerol over activated carbons for syngas production. Journal of Analytical and Applied Pyrolysis, 2009, 84, 145-150.	5.5	137
118	Improving hydrogen storage in Ni-doped carbon nanospheres. International Journal of Hydrogen Energy, 2009, 34, 3070-3076.	7.1	73
119	Graphitic encapsulation of micron- and nano-sized Ni particles using ethylene as precursor. Applied Surface Science, 2009, 256, 194-201.	6.1	5
120	Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass and Bioenergy, 2009, 33, 933-940.	5.7	178
121	The production of carbon nanofibers and thin films on palladium catalysts from ethylene–oxygen mixtures. Carbon, 2009, 47, 2269-2280.	10.3	18
122	Growth of nanofilaments on carbon-based materials from microwave-assisted decomposition of CH4. Applied Surface Science, 2008, 254, 3553-3557.	6.1	33
123	Microwave-assisted pyrolysis of CH4/N2 mixtures over activated carbon. Journal of Analytical and Applied Pyrolysis, 2008, 82, 158-162.	5.5	48
124	Microwave-assisted dry reforming of methane. International Journal of Hydrogen Energy, 2008, 33, 4337-4344.	7.1	201
125	Development of microporous carbon xerogels by controlling synthesis conditions. Journal of Non-Crystalline Solids, 2008, 354, 817-825.	3.1	50
126	Microwave drying as an effective method to obtain porous carbon xerogels. Journal of Non-Crystalline Solids, 2008, 354, 4024-4026.	3.1	37

#	Article	IF	CITATIONS
127	Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere, 2008, 70, 397-403.	8.2	162
128	Microwave-assisted regeneration of activated carbons loaded with pharmaceuticals. Water Research, 2007, 41, 3299-3306.	11.3	111
129	Evidence of Self-Gasification during the Microwave-Induced Pyrolysis of Coffee Hulls. Energy & Fuels, 2007, 21, 373-378.	5.1	174
130	Biogas to Syngas by Microwave-Assisted Dry Reforming in the Presence of Char. Energy & Fuels, 2007, 21, 2066-2071.	5.1	91
131	Carbon nanofilament synthesis by the decomposition of CH4/CO2 under microwave heating. Carbon, 2007, 45, 1706-1709.	10.3	17
132	Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. Journal of Analytical and Applied Pyrolysis, 2007, 79, 128-135.	5.5	295
133	Microwave-assisted catalytic decomposition of methane over activated carbon for CO2CO2-free hydrogen production. International Journal of Hydrogen Energy, 2007, 32, 4792-4799.	7.1	123
134	Chapter 1 Types of carbon adsorbents and their production. Interface Science and Technology, 2006, 7, 1-47.	3.3	74
135	New acrylic monolithic carbon molecular sieves for O2/N2 and CO2/CH4 separations. Carbon, 2006, 44, 1158-1165.	10.3	33
136	Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresource Technology, 2006, 97, 1185-1193.	9.6	343
137	Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature. Journal of Analytical and Applied Pyrolysis, 2006, 77, 127-132.	5.5	127
138	Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge. Fuel Processing Technology, 2005, 86, 1007-1020.	7.2	176
139	Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. Microporous and Mesoporous Materials, 2005, 85, 7-15.	4.4	241
140	Oxidative adsorption of methyl mercaptan on nitrogen-enriched bituminous coal-based activated carbon. Carbon, 2005, 43, 208-210.	10.3	41
141	Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue. Journal of Analytical and Applied Pyrolysis, 2005, 74, 406-412.	5.5	93
142	Microwave heating as a novel method for introducing molecular sieve properties into activated carbon fibres. Carbon, 2004, 42, 227-229.	10.3	23
143	Microwave-induced regeneration of activated carbons polluted with phenol. A comparison with conventional thermal regeneration. Carbon, 2004, 42, 1383-1387.	10.3	165
144	On the nature of basic sites on carbon surfaces: an overview. Carbon, 2004, 42, 1219-1225.	10.3	461

#	Article	IF	CITATIONS
145	Preparation and modification of activated carbon fibres by microwave heating. Carbon, 2004, 42, 1315-1320.	10.3	142
146	Effects of oxidative treatments with air and CO2 on vapour grown carbon nanofibres (VGCNFs) produced at industrial scale. Thermochimica Acta, 2004, 423, 99-106.	2.7	19
147	Microwave pyrolysis of sewage sludge: analysis of the gas fraction. Journal of Analytical and Applied Pyrolysis, 2004, 71, 657-667.	5.5	173
148	Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide. Carbon, 2004, 42, 469-476.	10.3	252
149	Gas chromatographic–mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges. Journal of Chromatography A, 2003, 1012, 193-206.	3.7	157
150	Infrared Spectroscopy of Carbon Materials:Â A Quantum Chemical Study of Model Compounds. Journal of Physical Chemistry B, 2003, 107, 6350-6359.	2.6	328
151	Basic Surface Oxides on Carbon Materials:Â A Global View. Langmuir, 2003, 19, 3505-3511.	3.5	132
152	Microwave-induced pyrolysis of sewage sludge. Water Research, 2002, 36, 3261-3264.	11.3	252
153	On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. Journal of Analytical and Applied Pyrolysis, 2002, 63, 209-222.	5.5	327
154	Relation between texture and reactivity in metallurgical cokes obtained from coal using petroleum coke as additive. Fuel Processing Technology, 2002, 77-78, 199-205.	7.2	23
155	Reactivity of pyrolyzed sewage sludge in air and CO2. Journal of Analytical and Applied Pyrolysis, 2001, 58-59, 943-954.	5.5	57
156	Thermal treatments of activated carbon fibres using a microwave furnace. Microporous and Mesoporous Materials, 2001, 47, 243-252.	4.4	93
157	Thermal performance of numerical model of hot strip mill runout table. Ironmaking and Steelmaking, 2001, 28, 474-480.	2.1	4
158	Pyrone-Like Structures as Novel Oxygen-Based Organic Superbases. Angewandte Chemie - International Edition, 2000, 39, 1320-1323.	13.8	17
159	Microcalorimetric study of acid sites on ammonia- and acid-pretreated activated carbon. Carbon, 2000, 38, 691-700.	10.3	51
160	Determination of metallurgical coke reactivity at INCAR: NSC and ECE-INCAR reactivity tests. Ironmaking and Steelmaking, 1999, 26, 117-121.	2.1	53
161	Modification of the surface chemistry of active carbons by means of microwave-induced treatments. Carbon, 1999, 37, 1115-1121.	10.3	117
162	Contribution of pyrone-type structures to carbon-basicity: Theoretical evaluation of the pKa of model compounds. Carbon, 1999, 37, 1002-1006.	10.3	13

#	Article	IF	CITATIONS
163	Impact of Pretreatments on the Selectivity of Carbon for NOx Adsorption/Reduction. Energy & Fuels, 1999, 13, 903-906.	5.1	26
164	Contribution of Pyrone-Type Structures to Carbon Basicity:Â An ab Initio Study. Langmuir, 1999, 15, 3897-3904.	3.5	54
165	Thermal Treatment of Active Carbons: a Comparison Between Microwave and Electrical Hating. Journal of Microwave Power and Electromagnetic Energy, 1999, 34, 137-143.	0.8	54
166	A semi-industrial scale study of petroleum coke as an additive in cokemaking. Fuel Processing Technology, 1998, 55, 129-141.	7.2	26
167	On the use of calorimetric techniques for the characterization of carbons: A brief review. Thermochimica Acta, 1998, 312, 79-86.	2.7	28
168	Calorimetric study of oxygen adsorption on activated carbon. Thermochimica Acta, 1998, 312, 87-93.	2.7	18
169	Thermal behaviour and reactivity of green petroleum cokes used as additives in metallurgical cokemaking. Journal of Analytical and Applied Pyrolysis, 1998, 45, 75-87.	5.5	4
170	On the distribution of oxygen-containing surface groups in carbons and their influence on the preparation of carbon-supported molydenum catalysts. Solid State Ionics, 1998, 112, 103-111.	2.7	21
171	Contribution of the Basal Planes to Carbon Basicity:  An Ab Initio Study of the H3O+â^'Ï€ Interaction in Cluster Models. Journal of Physical Chemistry B, 1998, 102, 5595-5601.	2.6	77
172	On the Modification and Characterization of Chemical Surface Properties of Activated Carbon:Â Microcalorimetric, Electrochemical, and Thermal Desorption Probes. Langmuir, 1997, 13, 3414-3421.	3.5	96
173	Characterization of Petroleum Coke as an Additive in Metallurgical Cokemaking. Influence on Metallurgical Coke Quality. Energy & Fuels, 1997, 11, 379-384.	5.1	34
174	Thermal stability of oxygenated functions in activated carbons. Journal of Analytical and Applied Pyrolysis, 1997, 43, 125-138.	5.5	195
175	An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon, 1997, 35, 1339-1348.	10.3	377
176	Low-Temperature Generation of Basic Carbon Surfaces by Hydrogen Spillover. The Journal of Physical Chemistry, 1996, 100, 17243-17248.	2.9	70
177	On the Modification and Characterization of Chemical Surface Properties of Activated Carbon:Â In the Search of Carbons with Stable Basic Properties. Langmuir, 1996, 12, 4404-4410.	3.5	319
178	Characterization of Petroleum Coke as an Additive in Metallurgical Cokemaking. Modification of Thermoplastic Properties of Coal. Energy & Fuels, 1996, 10, 1262-1268.	5.1	56
179	Carbonization of wet and preheated coal. Effect on coke quality and its relation with textural properties. Journal of Analytical and Applied Pyrolysis, 1996, 38, 119-130.	5.5	12
180	On the difference between the isoelectric point and the point of zero charge of carbons. Carbon, 1995, 33, 1655-1657.	10.3	147

#	Article	IF	CITATIONS
181	Adición de coque de petróleo a mezclas coquizables. Modificación de la calidad del coque metalúrgico. Revista De Metalurgia, 1995, 31, 235-241.	0.5	1
182	Modification of coke properties as a consequence of coal preheating. Fuel Processing Technology, 1993, 36, 307-312.	7.2	2
183	Relation between reactivity and textural properties in cokes from wet and preheated coals. Solid State Ionics, 1993, 63-65, 772-776.	2.7	6
184	Microwave Heating Applied to Pyrolysis. , 0, , .		41
185	Designing Nanostructured Carbon Xerogels. , 0, , .		5