Zhi-Ming Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8673089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inter-clusters synergy in iron-organic frameworks for efficient CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 300, 120487.	10.8	34
2	Porous Î ² -FeOOH nanotube stabilizing Au single atom for high-efficiency nitrogen fixation. Nano Research, 2022, 15, 3026-3033.	5.8	28
3	Accelerating Anode Reaction with Electro-oxidation of Alcohols over Ru Nanoparticles to Reduce the Potential for Water Splitting. ACS Applied Materials & Interfaces, 2022, 14, 1452-1459.	4.0	13
4	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
5	Switching Excited State Distribution of Metal–Organic Framework for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2022, 134, .	1.6	5
6	Heavy-atom free organic photosensitizers for efficient hydrogen evolution with λÂ>Â600Ânm visible-light excitation. Applied Catalysis B: Environmental, 2022, 316, 121655.	10.8	3
7	W Singleâ€Atom Catalyst for CH ₄ Photooxidation in Water Vapor. Advanced Materials, 2022, 34, .	11.1	31
8	Microenvironment Regulation of {Co ₄ ^{II} O ₄ } Cubane for Syngas Photosynthesis. Inorganic Chemistry, 2022, 61, 13058-13066.	1.9	3
9	Anchoring ultrafine Cu2O nanocluster on PCN for CO2 photoreduction in water vapor with much improved stability. Applied Catalysis B: Environmental, 2022, 317, 121702.	10.8	22
10	Construction of hierarchical photocatalysts by growing ZnIn2S4 nanosheets on Prussian blue analogue-derived bimetallic sulfides for solar co-production of H2 and organic chemicals. Journal of Energy Chemistry, 2021, 54, 386-394.	7.1	39
11	Facile electron delivery from graphene template to ultrathin metal-organic layers for boosting CO2 photoreduction. Nature Communications, 2021, 12, 813.	5.8	114
12	H-Bond-Mediated Selectivity Control of Formate versus CO during CO ₂ Photoreduction with Two Cooperative Cu/X Sites. Journal of the American Chemical Society, 2021, 143, 6114-6122.	6.6	105
13	Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Applied Catalysis B: Environmental, 2021, 288, 120001.	10.8	56
14	Charge Transfer from Donor to Acceptor in Conjugated Microporous Polymer for Enhanced Photosensitization. Angewandte Chemie, 2021, 133, 22233-22240.	1.6	24
15	Charge Transfer from Donor to Acceptor in Conjugated Microporous Polymer for Enhanced Photosensitization. Angewandte Chemie - International Edition, 2021, 60, 22062-22069.	7.2	37
16	Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reuse of noble-metal photosensitizer during CO2 photoreduction. Chinese Journal of Catalysis, 2021, 42, 1790-1797.	6.9	20
17	Hot-electron leading-out strategy for constructing photostable HOF catalysts with outstanding H2 evolution activity. Applied Catalysis B: Environmental, 2021, 296, 120337.	10.8	28
18	Bidirectional sensitization in Ruthenium(II)-antenna dyad beyond energy flow of biological model for efficient photosynthesis. Dyes and Pigments, 2021, 196, 109811.	2.0	2

#	Article	IF	CITATIONS
19	Construction of Lowâ€Cost Zâ€Scheme Heterostructure Cu ₂ O/PCN for Highly Selective CO ₂ Photoreduction to Methanol with Water Oxidation. Small, 2021, 17, e2103558.	5.2	23
20	Feeding Carbonylation with CO ₂ via the Synergy of Single-Site/Nanocluster Catalysts in a Photosensitizing MOF. Journal of the American Chemical Society, 2021, 143, 20792-20801.	6.6	91
21	Synergistic Effect over Sub-nm Pt Nanocluster@MOFs Significantly Boosts Photo-oxidation of N-alkyl(iso)quinolinium Salts. IScience, 2020, 23, 100793.	1.9	16
22	Unveiling Single Atom Nucleation for Isolating Ultrafine fcc Ru Nanoclusters with Outstanding Dehydrogenation Activity. Advanced Energy Materials, 2020, 10, 2002138.	10.2	29
23	Design and synthesis of {CaCo ₃ }-based sandwich-type polyoxometalate. Journal of Coordination Chemistry, 2020, 73, 2373-2382.	0.8	2
24	Interfacial electronic interaction of atomically dispersed IrClx on ultrathin Co(OH)2/CNTs for efficient electrocatalytic water oxidation. Applied Catalysis B: Environmental, 2020, 279, 119398.	10.8	21
25	Boosting Photocatalytic Activities for Organic Transformations through Merging Photocatalyst and Transition-Metal Catalyst in Flexible Polymers. ACS Catalysis, 2020, 10, 11758-11767.	5.5	38
26	Strong Visibleâ€Lightâ€Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis. Angewandte Chemie, 2020, 132, 13051-13057.	1.6	8
27	Improving photosensitization for photochemical CO2-to-CO conversion. National Science Review, 2020, 7, 1459-1467.	4.6	44
28	Photocatalytic coproduction of H2 and industrial chemical over MOF-derived direct Z-scheme heterostructure. Applied Catalysis B: Environmental, 2020, 273, 119066.	10.8	73
29	Strong Visibleâ€Lightâ€Absorbing Cuprous Sensitizers for Dramatically Boosting Photocatalysis. Angewandte Chemie - International Edition, 2020, 59, 12951-12957.	7.2	26
30	Encapsulation of Single Iron Sites in a Metal–Porphyrin Framework for High-Performance Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2020, 59, 6301-6307.	1.9	57
31	Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. Journal of Materials Chemistry A, 2019, 7, 19831-19837.	5.2	108
32	A broadband and strong visible-light-absorbing photosensitizer boosts hydrogen evolution. Nature Communications, 2019, 10, 3155.	5.8	103
33	Polyoxometalateâ€Derived Ultrasmall Pt ₂ W/WO ₃ Heterostructure Outperforms Platinum for Largeâ€Currentâ€Density H ₂ Evolution. Advanced Energy Materials, 2019, 9, 1900597.	10.2	74
34	Encapsulating Perovskite Quantum Dots in Ironâ€Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2019, 131, 9591-9595.	1.6	53
35	Encapsulating Perovskite Quantum Dots in Ironâ€Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2019, 58, 9491-9495.	7.2	503
36	Sensitizing Ru(II) polyimine redox center with strong light-harvesting coumarin antennas to mimic energy flow of biological model for efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 253, 105-110.	10.8	22

#	Article	IF	CITATIONS
37	Heavy atom-free Keto-di-coumarin as earth-abundant strong visible light-harvesting photosensitizer for efficient photocatalytic hydrogen evolution. Dyes and Pigments, 2019, 166, 84-91.	2.0	14
38	MOF/CC-derivatives with trace amount of cobalt oxides as efficient electrocatalysts for oxygen reduction reaction. Chinese Chemical Letters, 2019, 30, 989-994.	4.8	12
39	Photosensitizing single-site metalâ °organic framework enabling visible-light-driven CO2 reduction for syngas production. Applied Catalysis B: Environmental, 2019, 245, 496-501.	10.8	119
40	Nitrogen Coordination To Dramatically Enhance the Stability of In-MOF for Selectively Capturing CO ₂ from a CO ₂ /N ₂ Mixture. Crystal Growth and Design, 2019, 19, 1322-1328.	1.4	24
41	In Situ Synthesis of CdS/Graphdiyne Heterojunction for Enhanced Photocatalytic Activity of Hydrogen Production. ACS Applied Materials & Interfaces, 2019, 11, 2655-2661.	4.0	161
42	Self-Template Synthesis of Co–Se–S–O Hierarchical Nanotubes as Efficient Electrocatalysts for Oxygen Evolution under Alkaline and Neutral Conditions. ACS Applied Materials & Interfaces, 2018, 10, 8231-8237.	4.0	43
43	Capped Polyoxometalate Pillars between Metal–Organic Layers for Transferring a Supramolecular Structure into a Covalent 3D Framework. Inorganic Chemistry, 2018, 57, 1342-1349.	1.9	40
44	Extraction of nickel from NiFe-LDH into Ni ₂ P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science, 2018, 9, 1375-1384.	3.7	257
45	Charge-regulated sequential adsorption of anionic catalysts and cationic photosensitizers into metal-organic frameworks enhances photocatalytic proton reduction. Applied Catalysis B: Environmental, 2018, 224, 46-52.	10.8	81
46	Engineering the Surface Structure of Binary/Ternary Ferrite Nanoparticles as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 1075-1083.	1.8	19
47	Highly efficient oxygen evolution electrocatalysts prepared by using reduction-engraved ferrites on graphene oxide. Inorganic Chemistry Frontiers, 2018, 5, 310-318.	3.0	24
48	Phosphorized polyoxometalate-etched iron-hydroxide porous nanotubes for efficient electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 24479-24485.	5.2	39
49	Simultaneous frapping of C ₂ H ₂ and C ₂ H ₆ from a Ternary Mixture of C ₂ H ₄ /C ₂ H ₆ in a Robust Metalâ€"Organic Framework for the Purification of C ₂ H ₄ . Angewandte Chemie	7.2	223
50	Simultaneous Trapping of C ₂ H ₂ and C ₂ H ₆ from a Ternary Mixture of C ₂ H ₂ /C ₂ /C ₂ /C ₂ H ₆ in a Robust Metalâ€"Organic Framework for the Purification of C ₂ H ₄ . Angewandte Chemie,	1.6	71
51	2018, 130, 16299-16303. Extended structure constructed from {Co7} cluster-containing sandwich-type polyoxometalate. Inorganic Chemistry Communication, 2018, 95, 117-121.	1.8	1
52	Feâ€CoP Electrocatalyst Derived from a Bimetallic Prussian Blue Analogue for Large urrentâ€Density Oxygen Evolution and Overall Water Splitting. Advanced Science, 2018, 5, 1800949.	5.6	318
53	Robust and Long-Lived Excited State Ru(II) Polyimine Photosensitizers Boost Hydrogen Production. ACS Catalysis, 2018, 8, 8659-8670.	5.5	69
54	Highly Dispersed Polyoxometalateâ€Doped Porous Co ₃ O ₄ Water Oxidation Photocatalysts Derived from POM@MOF Crystalline Materials. Chemistry - A European Journal, 2016, 22, 15513-15520.	1.7	87

#	Article	IF	CITATIONS
55	Assembly of polyoxometalates and Ni-bpy cationic units into the molecular core–shell structures as bifunctional electrocatalysts. RSC Advances, 2016, 6, 99010-99015.	1.7	18
56	Highly Efficient Cooperative Catalysis by Co ^{III} (Porphyrin) Pairs in Interpenetrating Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 13943-13947.	1.6	24
57	Highly Efficient Cooperative Catalysis by Co ^{III} (Porphyrin) Pairs in Interpenetrating Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 13739-13743.	7.2	78
58	Encapsulation of tungstophosphoric acid into harmless MIL-101(Fe) for effectively removing cationic dye from aqueous solution. RSC Advances, 2016, 6, 81622-81630.	1.7	48
59	Hierarchical Integration of Photosensitizing Metal–Organic Frameworks and Nickelâ€Containing Polyoxometalates for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Angewandte Chemie, 2016, 128, 6521-6526.	1.6	53
60	Hierarchical Integration of Photosensitizing Metal–Organic Frameworks and Nickelâ€Containing Polyoxometalates for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Angewandte Chemie - International Edition, 2016, 55, 6411-6416.	7.2	230
61	Polyoxometalate-based supramolecular architecture constructed from a purely inorganic 1D chain and a metal–organic layer with efficient catalytic activity. RSC Advances, 2016, 6, 15513-15517.	1.7	24
62	Polyoxometalate-assisted synthesis of transition-metal cubane clusters as artificial mimics of the oxygen-evolving center of photosystem II. Coordination Chemistry Reviews, 2016, 313, 94-110.	9.5	111
63	Cation-mediated optical resolution and anticancer activity of chiral polyoxometalates built from entirely achiral building blocks. Chemical Science, 2016, 7, 4220-4229.	3.7	87
64	Extended structural materials composed of transition-metal-substituted arsenicniobates and their photocatalytic activity. RSC Advances, 2015, 5, 44198-44203.	1.7	40
65	Photosensitizing Metal–Organic Framework Enabling Visible-Light-Driven Proton Reduction by a Wells–Dawson-Type Polyoxometalate. Journal of the American Chemical Society, 2015, 137, 3197-3200.	6.6	374
66	Recent progress in polyoxoniobates decorated and stabilized via transition metal cations or clusters. CrystEngComm, 2015, 17, 6261-6268.	1.3	51
67	Polyoxometalate-Based Nickel Clusters as Visible Light-Driven Water Oxidation Catalysts. Journal of the American Chemical Society, 2015, 137, 5486-5493.	6.6	341
68	Chiral recognition and selection during the self-assembly process of protein-mimic macroanions. Nature Communications, 2015, 6, 6475.	5.8	66
69	Heterometallic 3d–4f cluster-containing polyoxotungstate obtained by partial disassembly of preformed large clusters. RSC Advances, 2015, 5, 76206-76210.	1.7	15
70	Incorporating Polyoxometalates into a Porous MOF Greatly Improves Its Selective Adsorption of Cationic Dyes. Chemistry - A European Journal, 2014, 20, 6927-6933.	1.7	237
71	Crown Inorganic–Organic Hybrid Composed of Copper-Amino Acid Rings and the Classical Keggin Polyoxoanions. Journal of Cluster Science, 2014, 25, 253-259.	1.7	4
72	Four Polyoxonibate-Based Inorganic–Organic Hybrids Assembly from Bicapped Heteropolyoxonibate with Effective Antitumor Activity. Crystal Growth and Design, 2014, 14, 110-116.	1.4	85

#	Article	IF	CITATIONS
73	Design and construction of a thermotropic liquid crystal material based on high-nuclear transition-metal cluster-containing polyoxometalates. RSC Advances, 2014, 4, 43806-43810.	1.7	4
74	Synthesis of a poly-pendant 1-D chain based on â€~trans-vanadium' bicapped, Keggin-type vanadtungstate and its photocatalytic properties. Dalton Transactions, 2014, 43, 16265-16269.	1.6	17
75	A cobalt-containing pseudosandwich-type polyoxometalate based on a lacunary Lindqvist polyoxovanadate. CrystEngComm, 2014, 16, 1187.	1.3	9
76	Polyoxoniobate-based 3D framework materials with photocatalytic hydrogen evolution activity. Chemical Communications, 2014, 50, 6017.	2.2	124
77	Self-assembly and thermotropic liquid crystal properties of a hexavacant germanomolybdate: [Ge2Mo16O58]12â^'. CrystEngComm, 2014, 16, 6784.	1.3	4
78	Polyoxometalate-Based Cobalt–Phosphate Molecular Catalysts for Visible Light-Driven Water Oxidation. Journal of the American Chemical Society, 2014, 136, 5359-5366.	6.6	414
79	Grafting Transition Metal–Organic Fragments onto W/Ta Mixedâ€Addendum Nanoclusters for Broad‧pectrumâ€Đriven Photocatalysis. ChemPlusChem, 2014, 79, 1153-1158.	1.3	11
80	A polyoxometalate-based single-molecule magnet with a mixed-valent {MnIV2MnIII6MnII4} core. Chemical Communications, 2013, 49, 2515.	2.2	80
81	Integration of Lnâ€Sandwich POMs into Molecular Porous Systems Leading to Selfâ€Assembly of Metal–POM Framework Materials. European Journal of Inorganic Chemistry, 2013, 2013, 4770-4774.	1.0	21
82	A polyoxometalate-based ionic crystal assembly from a heterometallic cluster and polyoxoanions with visible-light catalytic activity. RSC Advances, 2013, 3, 20829.	1.7	31
83	A new electrodeposition approach for preparing polyoxometalates-based electrochromic smart windows. Journal of Materials Chemistry A, 2013, 1, 216-220.	5.2	59
84	Expansion of sodalite-type metal–organic frameworks with heterometallic metal–oxo cluster and its cation exchange property. CrystEngComm, 2013, 15, 459-462.	1.3	14
85	Thermotropic liquid crystals built from organic–inorganic hybrid polyoxometalates and a simple cationic surfactant. Journal of Materials Chemistry C, 2013, 1, 3681.	2.7	26
86	Polyoxometalate-based purely inorganic porous frameworks with selective adsorption and oxidative catalysis functionalities. Chemical Communications, 2013, 49, 3673.	2.2	105
87	Extended structure constructed from sandwich-type tungstoantimonites fused together by water substitution on the sandwiching metal centers. Journal of Coordination Chemistry, 2012, 65, 1443-1450.	0.8	4
88	A (3,6)-connected metal-organic framework consisting of chair-like {Fe6} clusters and BTC linkers. Journal of Coordination Chemistry, 2012, 65, 48-54.	0.8	6
89	Inorganic Crown Ethers: Sulfateâ€Based Preyssler Polyoxometalates. Chemistry - A European Journal, 2012, 18, 9184-9188	1.7	30
90	Hexameric polyoxometalates decorated by six 3d–4f heterometallic clusters. Dalton Transactions, 2011, 40, 6475.	1.6	74

#	Article	IF	CITATIONS
91	Two New {P8W49} Wheel-shaped Tungstophosphates Decorated by Co(II), Ni(II) Ions. Journal of Cluster Science, 2010, 21, 679-689.	1.7	17
92	Enantiomerically Pure Chiral {Fe ₂₈ } Wheels. Angewandte Chemie - International Edition, 2009, 48, 1581-1584.	7.2	144
93	Protein-Sized Chiral Fe ₁₆₈ Cages with NbO-Type Topology. Journal of the American Chemical Society, 2009, 131, 14600-14601.	6.6	128
94	A New Ni ₁₂ Cluster Based on Polyoxometalate Ligands. Inorganic Chemistry, 2009, 48, 10889-10891.	1.9	47
95	Two new ladder-like inorganic chains constructed from Cu-containing sandwich polyoxoanions. Journal of Coordination Chemistry, 2009, 62, 1415-1422.	0.8	5
96	New trimeric polyoxotungstate aggregates based on [P2W12O48]14â^' building blocks. Chemical Communications, 2008, , 1650.	2.2	106