
Andrew D Scully

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8672851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Millimeter‧ized Clusters of Triple Cation Perovskite Enables Highly Efficient and Reproducible Rollâ€ŧoâ€Roll Fabricated Inverted Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	36
2	Detection of Halomethanes Using Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 1454-1464.	14.6	32
3	A Lab-to-Fab Study toward Roll-to-Roll Fabrication of Reproducible Perovskite Solar Cells under Ambient Room Conditions. Cell Reports Physical Science, 2021, 2, 100293.	5.6	39
4	Balancing Charge Extraction for Efficient Backâ€Contact Perovskite Solar Cells by Using an Embedded Mesoscopic Architecture. Advanced Energy Materials, 2021, 11, 2100053.	19.5	19
5	Unconventional, Gram-Scale Synthesis of a Molecular Dimer Organic Luminogen with Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2021, 13, 40441-40450.	8.0	9
6	Drop-Casting Method to Screen Ruddlesden–Popper Perovskite Formulations for Use in Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 56217-56225.	8.0	17
7	Recent progress towards roll-to-roll manufacturing of perovskite solar cells using slot-die processing. Flexible and Printed Electronics, 2020, 5, 014006.	2.7	37
8	Enhancement of 3D/2D Perovskite Solar Cells Using an F4TCNQ Molecular Additive. ACS Applied Energy Materials, 2020, 3, 8205-8215.	5.1	28
9	Crystallisation control of drop-cast quasi-2D/3D perovskite layers for efficient solar cells. Communications Materials, 2020, 1, .	6.9	66
10	Solvent Engineering of a Dopant-Free Spiro-OMeTAD Hole-Transport Layer for Centimeter-Scale Perovskite Solar Cells with High Efficiency and Thermal Stability. ACS Applied Materials & Interfaces, 2020, 12, 8260-8270.	8.0	42
11	Multiple Roles of Cobalt Pyrazol-Pyridine Complexes in High-Performing Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2019, 10, 4675-4682.	4.6	13
12	The Tandem Photoredox Catalysis Mechanism of [Ir(ppy) ₂ (dtb-bpy)] ⁺ Enabling Access to Energy Demanding Organic Substrates. Journal of the American Chemical Society, 2019, 141, 17646-17658.	13.7	102
13	Selfâ€Assembled 2D Perovskite Layers for Efficient Printable Solar Cells. Advanced Energy Materials, 2019, 9, 1803258.	19.5	149
14	Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy and Environmental Science, 2018, 11, 1880-1889.	30.8	148
15	Inverted perovskite solar cells with high fill-factors featuring chemical bath deposited mesoporous NiO hole transporting layers. Nano Energy, 2018, 49, 163-171.	16.0	91
16	Photocatalytic and Chemoselective Transfer Hydrogenation of Diarylimines in Batch and Continuous Flow. Organic Letters, 2018, 20, 905-908.	4.6	47
17	A visible-light photocatalytic thiolation of aryl, heteroaryl and vinyl iodides. Organic and Biomolecular Chemistry, 2018, 16, 1543-1551.	2.8	26
18	Lowâ€Cost <i>N</i> , <i>N</i> ′â€Bicarbazoleâ€Based Dopantâ€Free Holeâ€Transporting Materials for Largeâ€ Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1800538.	Area 19.5	89

ANDREW D SCULLY

#	Article	IF	CITATIONS
19	3.4: Room Temperature Dual Emission of Fluorescence and Phosphorescence in the Solid State. Digest of Technical Papers SID International Symposium, 2018, 49, 26-28.	0.3	0
20	Effect of Grain Cluster Size on Back ontact Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1805098.	14.9	32
21	Diammonium and Monoammonium Mixedâ€Organicâ€Cation Perovskites for High Performance Solar Cells with Improved Stability. Advanced Energy Materials, 2017, 7, 1700444.	19.5	121
22	A facile deposition method for CuSCN: Exploring the influence of CuSCN on J-V hysteresis in planar perovskite solar cells. Nano Energy, 2017, 32, 310-319.	16.0	44
23	Directing nucleation and growth kinetics in solution-processed hybrid perovskite thin-films. Science China Materials, 2017, 60, 617-628.	6.3	64
24	New barrier encapsulation and lifetime assessment of printed organic photovoltaic modules. Solar Energy Materials and Solar Cells, 2016, 155, 108-116.	6.2	30
25	A stability study of roll-to-roll processed organic photovoltaic modules containing a polymeric electron-selective layer. Solar Energy Materials and Solar Cells, 2016, 152, 133-140.	6.2	16
26	An Alternating Donor–Acceptor Conjugated Polymer Based on Benzodithiophene and [3,4-c]pyrrole-4,6-dione: Synthesis, Characterization, and Application in Photovoltaic Devices. Australian Journal of Chemistry, 2015, 68, 1773.	0.9	4
27	Copper(I) Iodide as Holeâ€Conductor in Planar Perovskite Solar Cells: Probing the Origin of <i>J</i> – <i>V</i> Hysteresis. Advanced Functional Materials, 2015, 25, 5650-5661.	14.9	260
28	P-136: New Materials for Organic Light-Emitting Diodes Displaying Thermally-Activated Delayed Fluorescence. Digest of Technical Papers SID International Symposium, 2015, 46, 1674-1677.	0.3	1
29	Insights into Planar CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Using Impedance Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 4444-4453.	3.1	160
30	Donor-acceptor rod-coil block copolymers comprising poly[2,7-(9,9-dihexylfluorene)- <i>alt</i> -bithiophene] and fullerene as compatibilizers for organic photovoltaic devices. Journal of Polymer Science Part A, 2015, 53, 888-903.	2.3	10
31	Diffusion-Facilitated Direct Determination of Intrinsic Parameters for Rapid Photoinduced Bimolecular Electron-Transfer Reactions in Nonpolar Solvents. Journal of Physical Chemistry A, 2015, 119, 2770-2779.	2.5	15
32	Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy, 2015, 18, 118-125.	16.0	232
33	Influence of moisture out-gassing from encapsulant materials on the lifetime of organic solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 485-491.	6.2	44
34	Recent Progress in high efficiency blue emitter materials for OLEDs: Development of blue phosphorescent and TADF Materials. , 2014, , .		0
35	Efficient monochromatic red, green, and blue up-converted luminescence from Yb3+-doped micro-phosphors co-doped with Er3+ or Tm3+ ions. Journal of Alloys and Compounds, 2014, 603, 136-143.	5.5	13
36	High-performance oxygen barrier inorganic–organic coating for polymeric substrates. Surface and Coatings Technology, 2014, 239, 222-226.	4.8	10

ANDREW D SCULLY

#	Article	IF	CITATIONS
37	Aggregation of a Dibenzo[<i>b</i> , <i>def</i>]chrysene Based Organic Photovoltaic Material in Solution. Journal of Physical Chemistry B, 2014, 118, 6839-6849.	2.6	8
38	Self-assembled nano-phase particles for enhanced oxygen barrier coatings on polymeric materials. Progress in Organic Coatings, 2013, 76, 51-59.	3.9	9
39	Intraphase Microstructure–Understanding the Impact on Organic Solar Cell Performance. Advanced Functional Materials, 2013, 23, 5655-5662.	14.9	10
40	Band-gap tuning of pendant polymers for organic light-emitting devices and photovoltaic applications. Synthetic Metals, 2011, 161, 856-863.	3.9	24
41	Photo-spectroscopic properties of benzothiadiazole-containing pendant polymers for photovoltaic applications. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 220, 102-112.	3.9	5
42	Inactivation of Foodâ€borne Spoilage and Pathogenic Microâ€organisms on the Surface of a Photoactive Polymer. Photochemistry and Photobiology, 2010, 86, 1109-1117.	2.5	10
43	Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic) Tj ETQq1 1 0.78431	4 rgBT /O 5.0	verlock 10 Te 5
44	Photodynamic inactivation of bacterial spores on the surface of a photoactive polymer. Reactive and Functional Polymers, 2009, 69, 821-827.	4.1	28
45	Transient products in the photoreduction of benzophenone derivatives in poly(ethylene-vinyl) Tj ETQq1 1 0.784	314 rg BT	/Overlock 10 1 12
46	Photoactive nanocoating for controlling microbial proliferation on polymeric surfaces. Progress in Organic Coatings, 2008, 62, 40-48.	3.9	15
47	Effect of Diffusion on the Photoinduced Reaction between a Tetra-Anionic Porphyrin and Methylviologen Cation in Methanol. Journal of Physical Chemistry A, 2008, 112, 5378-5384.	2.5	5
48	The Effect of pH on the Photophysics and Photochemistry of Di-sulphonated Aluminum Phthalocyanine. Photochemistry and Photobiology, 2007, 71, 397-404.	2.5	3
49	The Effect of pH on the Photophysics and Photochemistry of Di-sulphonated Aluminum Phthalocyanine. Photochemistry and Photobiology, 2000, 71, 397.	2.5	46
50	Laser Line-Scanning Confocal Fluorescence Imaging of the Photodynamic Action of Aluminum and Zinc Phthalocyanines in V79–4Chinese Hamster Fibroblasts. Photochemistry and Photobiology, 1998, 68, 199-204.	2.5	17
51	Laser Line-Scanning Confocal Fluorescence Imaging of the Photodynamic Action of Aluminum and Zinc Phthalocyanines in V79-4 Chinese Hamster Fibroblasts. Photochemistry and Photobiology, 1998, 68, 199.	2.5	1
52	Laser line-scanning confocal fluorescence imaging of the photodynamic action of aluminum and zinc phthalocyanines in V79-4 Chinese hamster fibroblasts. Photochemistry and Photobiology, 1998, 68, 199-204.	2.5	15
53	Quenching of chlorophyll a fluorescence by oxygen in highly concentrated solutions and microdroplets. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 104, 141-149.	3.9	8
54	Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT		2

mechanisms. , 1997, 5, 9.

ANDREW D SCULLY

#	Article	IF	CITATIONS
55	Application of fluorescence lifetime imaging microscopy to the investigation of intracellular PDT mechanisms. Bioimaging, 1997, 5, 9-18.	1.3	42
56	Development of a laser-based fluorescence microscope with subnanosecond time resolution. Journal of Fluorescence, 1996, 6, 119-125.	2.5	53
57	Direct determination of kinetic parameters for diffusion-influenced reactions in solution by analysis of fluorescence decay curves. Journal of Fluorescence, 1995, 5, 107-120.	2.5	8
58	Photodegradation at the wood-clearcoat interface. Wood Science and Technology, 1995, 29, 183.	3.2	37
59	Study of the Fractional Power Dependence on Solvent Viscosity of the Rate Constant for Bimolecular Diffusion-Influenced Quenching Reactions between Oxygen and the Singlet and Triplet States of Anthracene Derivatives. The Journal of Physical Chemistry, 1994, 98, 4609-4616.	2.9	41
60	Evidence for long-range electron transfer in a diffusion-influenced bimolecular reaction from fluorescence decay measurements. Chemical Physics Letters, 1994, 228, 32-40.	2.6	23
61	Evidence for long-range electron transfer in a diffusion-influenced bimolecular reaction from fluorescence decay measurements. Chemical Physics Letters, 1994, 230, 216.	2.6	Ο
62	Analysis of the transient effect for a bimolecular fluorescence-quenching reaction between ions in aqueous solution. 2. Temperature dependence of kinetic parameters. The Journal of Physical Chemistry, 1993, 97, 10524-10529.	2.9	26
63	Analysis of the transient effect for a bimolecular fluorescence quenching reaction between ions in aqueous solution. The Journal of Physical Chemistry, 1992, 96, 7333-7337.	2.9	22
64	Temperature dependence of fluorescence from polymer-bound 2-(2′-hydroxyphenyl)-2H-benzotriazole photostabilizers. Journal of Photochemistry and Photobiology A: Chemistry, 1991, 55, 387-393.	3.9	11
65	A time-resolved fluorescence study of electronic excitation energy transport in concentrated dye solutions. Chemical Physics, 1991, 157, 253-269.	1.9	31
66	The effect of pressure on the dynamic quenching by oxygen of the excited singlet state of 9,10-dimethylanthracene in solution. Chemical Physics, 1991, 157, 271-278.	1.9	14
67	Electronic Energy Transport in Vinyl Aromatic Polymers. , 1991, , 295-305.		1
68	Pressure effects on the dynamic quenching by oxygen of singlet and triplet states of anthracene derivatives in solution. Journal of the American Chemical Society, 1990, 112, 6847-6853.	13.7	31
69	Photophysics of Hydroxyphenylbenzotriazole Polymer Photostabilizers. ACS Symposium Series, 1989, , 57-79.	0.5	4
70	Photophysics of polymer-bound 2-(2′-hydroxyphenyl)-2H-benzotriazole photostabilizers. Journal of Polymer Science, Polymer Letters Edition, 1988, 26, 505-510.	0.4	8
71	Photophysics of a sulfonated 2-hydroxyphenylbenzotriazole UV absorber in solution and in polymer substrates. Journal of Polymer Science Part A, 1987, 25, 1619-1631.	2.3	12
72	Photophysics of 6-(2′-hydroxy-4′-methoxyphenyl)-s-triazine photostabilizers. Journal of Photochemistry and Photobiology A: Chemistry, 1987, 40, 391-399.	3.9	13

#	Article	IF	CITATIONS
73	Effect of solvent on excited-state intramolecular proton transfer in benzotriazole photostabilizers. The Journal of Physical Chemistry, 1986, 90, 5089-5093.	2.9	75