Fuhar Dixit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8672725/publications.pdf Version: 2024-02-01

ΓΙΙΗΛΟ ΠΙΧΙΤ

#	Article	IF	CITATIONS
1	PFAS removal by ion exchange resins: A review. Chemosphere, 2021, 272, 129777.	4.2	144
2	Application of MXenes for water treatment and energy-efficient desalination: A review. Journal of Hazardous Materials, 2022, 423, 127050.	6.5	111
3	Efficient removal of GenX (HFPO-DA) and other perfluorinated ether acids from drinking and recycled waters using anion exchange resins. Journal of Hazardous Materials, 2020, 384, 121261.	6.5	65
4	PFOA and PFOS removal by ion exchange for water reuse and drinking applications: role of organic matter characteristics. Environmental Science: Water Research and Technology, 2019, 5, 1782-1795.	1.2	64
5	Removal of legacy PFAS and other fluorotelomers: Optimized regeneration strategies in DOM-rich waters. Water Research, 2020, 183, 116098.	5.3	38
6	PFAS and DOM removal using an organic scavenger and PFAS-specific resin: Trade-off between regeneration and faster kinetics. Science of the Total Environment, 2021, 754, 142107.	3.9	33
7	Characteristics of competitive uptake between Microcystin-LR and natural organic matter (NOM) fractions using strongly basic anion exchange resins. Water Research, 2018, 139, 74-82.	5.3	25
8	Simultaneous uptake of NOM and Microcystin-LR by anion exchange resins: Effect of inorganic ions and resin regeneration. Chemosphere, 2018, 192, 113-121.	4.2	25
9	Removal of Microcystin-LR from spiked natural and synthetic waters by anion exchange. Science of the Total Environment, 2019, 655, 571-580.	3.9	22
10	Removal of Zwitterionic PFAS by MXenes: Comparisons with Anionic, Nonionic, and PFAS-Specific Resins. Environmental Science & amp; Technology, 2022, 56, 6212-6222.	4.6	21
11	Microcystin-LR removal by ion exchange: Investigating multicomponent interactions in natural waters. Environmental Pollution, 2019, 253, 790-799.	3.7	15
12	Ion exchange and vacuum UV: A combined approach for removing organic matter and microcystins from natural waters. Chemical Engineering Journal, 2021, 414, 128855.	6.6	6
13	Performance of the HSDM to predict competitive uptake of PFAS, NOM and inorganic anions by suspended ion exchange processes. Environmental Science: Water Research and Technology, 2021, 7, 1417-1429.	1.2	5