Mario Soccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8672336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in Antioxidant Defence System in Durum Wheat under Hyperosmotic Stress: A Concise Overview. Plants, 2022, 11, 98.	1.6	9
2	Loss of ZmLIPOXYGENASE4 Decreases Fusarium verticillioides Resistance in Maize Seedlings. Genes, 2021, 12, 335.	1.0	8
3	Bioactive Compounds and Antioxidant Capacity in Anthocyanin-Rich Carrots: A Comparison between the Black Carrot and the Apulian Landrace "Polignano―Carrot. Plants, 2021, 10, 564.	1.6	19
4	In Vitro Antioxidant Capacity of Opuntia spp. Fruits Measured by the LOX-FL Method and its High Sensitivity Towards Betalains. Plant Foods for Human Nutrition, 2021, 76, 354-362.	1.4	15
5	Influence of Drought and Salt Stress on Durum Wheat Grain Quality and Composition: A Review. Plants, 2021, 10, 2599.	1.6	26
6	First Evidence of a Protective Effect of Plant Bioactive Compounds against H2O2-Induced Aconitase Damage in Durum Wheat Mitochondria. Antioxidants, 2020, 9, 1256.	2.2	5
7	Antioxidant/Oxidant Balance: Application as a biomarker of the antioxidant status in plasma of ewes fed seaweed Ascophyllum nodosum and flaxseed under high ambient temperature. Small Ruminant Research, 2019, 170, 102-108.	0.6	6
8	Antioxidant/Oxidant Balance as a novel approach to evaluate the effect on serum of long-term intake of plant antioxidant-rich foods. Journal of Functional Foods, 2018, 40, 778-784.	1.6	17
9	Assessment of Antioxidant Capacity and Putative Healthy Effects of Natural Plant Products Using Soybean Lipoxygenase-Based Methods. An Overview. Molecules, 2018, 23, 3244.	1.7	15
10	Measuring Activity of Native Plant Sirtuins - The Wheat Mitochondrial Model. Frontiers in Plant Science, 2018, 9, 961.	1.7	7
11	Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. Journal of Food Composition and Analysis, 2017, 63, 65-72.	1.9	68
12	Different effectiveness of two pastas supplemented with either lipophilic or hydrophilic/phenolic antioxidants in affecting serum as evaluated by the novel Antioxidant/Oxidant Balance approach. Food Chemistry, 2017, 221, 278-288.	4.2	25
13	The soybean lipoxygenase-fluorescein reaction may be used to assess antioxidant capacity of phytochemicals and serum. Analytical Methods, 2016, 8, 4354-4362.	1.3	12
14	Serum antioxidant capacity and peroxide level of seven healthy subjects after consumption of different foods. Data in Brief, 2016, 9, 818-822.	0.5	4
15	Antioxidant capacity of durum wheat large flour particles may be evaluated by QUENCHER _{ABTS} assay by adopting a proper calculation mode. Cereal Research Communications, 2015, 43, 682-691.	0.8	5
16	Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria—An Amazing Defense Tool Against Hyperosmotic Stress. Frontiers in Plant Science, 2015, 6, 1072.	1.7	26
17	Evaluation of Phenolic Antioxidant Capacity in Grains of Modern and Old Durum Wheat Genotypes by the Novel QUENCHERABTS Approach. Plant Foods for Human Nutrition, 2015, 70, 207-214.	1.4	17
18	Transport Pathways—Proton Motive Force Interrelationship in Durum Wheat Mitochondria. International Journal of Molecular Sciences, 2014, 15, 8186-8215.	1.8	12

MARIO SOCCIO

#	Article	IF	CITATIONS
19	Stay-green trait-antioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering. Journal of Plant Research, 2014, 127, 159-171.	1.2	23
20	An improved spectrophotometric phospholipase A2 assay using 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine as substrate and lipoxygenase as coupled enzyme. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56, 369-376.	0.9	2
21	The existence of phospholipase A2 activity in plant mitochondria and its activation by hyperosmotic stress in durum wheat (Triticum durum Desf.). Plant Science, 2013, 199-200, 91-102.	1.7	26
22	A new simple fluorimetric method to assay cytosolic ATP content: application to durum wheat seedlings to assess modulation of mitochondrial potassium channel and uncoupling protein activity under hyperosmotic stress. Biologia (Poland), 2013, 68, 421-432.	0.8	9
23	The uniqueness of the plant mitochondrial potassium channel. BMB Reports, 2013, 46, 391-397.	1.1	11
24	Antioxidant Activity of Free and Bound Compounds in Quinoa (<i>Chenopodium quinoa</i> Willd.) Seeds in Comparison with Durum Wheat and Emmer. Journal of Food Science, 2012, 77, C1150-5.	1.5	34
25	Dissection of antioxidant activity of durum wheat (Triticum durum Desf.) grains as evaluated by the new LOX/RNO method. Journal of Cereal Science, 2012, 56, 214-222.	1.8	19
26	Potassium channelâ€oxidative phosphorylation relationship in durum wheat mitochondria from control and hyperosmoticâ€stressed seedlings. Plant, Cell and Environment, 2011, 34, 2093-2108.	2.8	16
27	Activation of the plant mitochondrial potassium channel by free fatty acids and acyl-CoA esters: a possible defence mechanism in the response to hyperosmotic stress. Journal of Experimental Botany, 2011, 62, 141-154.	2.4	35
28	TRPC6 Mutations in Children with Steroid-Resistant Nephrotic Syndrome and Atypical Phenotype. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 1626-1634.	2.2	89
29	Mitochondrial proline oxidation is affected by hyperosmotic stress in durum wheat seedlings. Annals of Applied Biology, 2010, 157, 1-11.	1.3	24
30	ATP-Sensitive Cation-channel in Wheat (<i>Triticum durum</i> Desf.): Identification and Characterization of a Plant Mitochondrial Channel by Patch-clamp. Cellular Physiology and Biochemistry, 2010, 26, 975-982.	1.1	23
31	New Tool To Evaluate a Comprehensive Antioxidant Activity in Food Extracts: Bleaching of 4-Nitroso- <i>N</i> , <i>N</i> -dimethylaniline Catalyzed by Soybean Lipoxygenase-1. Journal of Agricultural and Food Chemistry, 2009, 57, 9682-9692.	2.4	20
32	Plant Inner Membrane Anion Channel (PIMAC) Function in Plant Mitochondria. Plant and Cell Physiology, 2008, 49, 1039-1055.	1.5	35
33	The Transcript Levels of two Plant Mitochondrial Uncoupling Protein (pUCP)-Related Genes are not Affected by Hyperosmotic Stress in Durum Wheat Seedlings Showing an Increased Level of pUCP Activity. Bioscience Reports, 2006, 26, 251-261.	1.1	12
34	Genome-Wide Expression Analysis of Glyoxalase I Genes Under Hyperosmotic Stress and Existence of a Stress-Responsive Mitochondrial Glyoxalase I Activity in Durum Wheat (Triticum durum Desf.). Frontiers in Plant Science, 0, 13, .	1.7	1