Gonzalo Durante-RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8671767/publications.pdf

Version: 2024-02-01

23 papers

1,417 citations

623574 14 h-index 22 g-index

24 all docs

24 docs citations

times ranked

24

2062 citing authors

#	Article	IF	CITATIONS
1	A Bifan Motif Shaped by ArsR1, ArsR2, and Their Cognate Promoters Frames Arsenic Tolerance of Pseudomonas putida. Frontiers in Microbiology, 2021, 12, 641440.	1.5	2
2	A SsrA/NIa-based Strategy for Post-Translational Regulation of Protein Levels in Gram-negative Bacteria. Bio-protocol, 2020, 10, e3688.	0.2	0
3	ArxA From Azoarcus sp. CIB, an Anaerobic Arsenite Oxidase From an Obligate Heterotrophic and Mesophilic Bacterium. Frontiers in Microbiology, 2019, 10, 1699.	1.5	14
4	Further Insights into the Architecture of the PN Promoter That Controls the Expression of the bzd Genes in Azoarcus. Genes, 2019, 10, 489.	1.0	2
5	A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in <i>Azoarcus</i> sp. CIB. MBio, 2019, 10, .	1.8	4
6	Bioremediation of Soil Contaminated with Arsenic. Microorganisms for Sustainability, 2019, , 321-351.	0.4	2
7	A Post-translational Metabolic Switch Enables Complete Decoupling of Bacterial Growth from Biopolymer Production in Engineered <i>Escherichia coli</i> . ACS Synthetic Biology, 2018, 7, 2686-2697.	1.9	58
8	Chapter 13. Anaerobic Pathways for the Catabolism of Aromatic Compounds. RSC Energy and Environment Series, 2018, , 333-390.	0.2	8
9	Refactoring the \hat{l} » phage lytic/lysogenic decision with a synthetic regulator. MicrobiologyOpen, 2016, 5, 575-581.	1.2	12
10	New challenges for syngas fermentation: towards production of biopolymers. Journal of Chemical Technology and Biotechnology, 2015, 90, 1735-1751.	1.6	53
11	Functional coexistence of twin arsenic resistance systems in <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>KT</scp> 2440. Environmental Microbiology, 2015, 17, 229-238.	1.8	52
12	Fructose 1â€phosphate is the one and only physiological effector of the Cra (FruR) regulator of <i>Pseudomonas putida</i> . FEBS Open Bio, 2014, 4, 377-386.	1.0	28
13	The Standard European Vector Architecture (SEVA) Plasmid Toolkit. Methods in Molecular Biology, 2014, 1149, 469-478.	0.4	28
14	Taxonomy becoming a driving force in genome sequencing projects. Systematic and Applied Microbiology, 2013, 36, 215-217.	1.2	2
15	The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Research, 2013, 41, D666-D675.	6.5	556
16	Identification of a Missing Link in the Evolution of an Enzyme into a Transcriptional Regulator. PLoS ONE, 2013, 8, e57518.	1.1	13
17	Bacterial Degradation of Benzoate. Journal of Biological Chemistry, 2012, 287, 10494-10508.	1.6	91
18	The Crp regulator of <i>Pseudomonas putida</i> : evidence of an unusually high affinity for its physiological effector, cAMP. Environmental Microbiology, 2012, 14, 702-713.	1.8	14

#	Article	IF	CITATIONS
19	Biochemical Characterization of the Transcriptional Regulator BzdR from Azoarcus sp. CIB. Journal of Biological Chemistry, 2010, 285, 35694-35705.	1.6	33
20	Anaerobic Catabolism of Aromatic Compounds: a Genetic and Genomic View. Microbiology and Molecular Biology Reviews, 2009, 73, 71-133.	2.9	378
21	New insights into the BzdR-mediated transcriptional regulation of the anaerobic catabolism of benzoate in Azoarcus sp. CIB. Microbiology (United Kingdom), 2008, 154, 306-316.	0.7	15
22	Oxygen-Dependent Regulation of the Central Pathway for the Anaerobic Catabolism of Aromatic Compounds in Azoarcus sp. Strain CIB. Journal of Bacteriology, 2006, 188, 2343-2354.	1.0	19
23	Proteomic analysis of lung biopsies: Differential protein expression profile between peritumoral and tumoral tissue. Proteomics, 2004, 4, 442-447.	1.3	33