
## Rakesh K Srivastava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8671032/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Ethanol exposure of human pancreatic normal ductal epithelial cells induces EMT phenotype and<br>enhances pancreatic cancer development in KC (Pdx1â€Cre and LSLâ€Kras <sup>G12D</sup> ) mice. Journal of<br>Cellular and Molecular Medicine, 2022, 26, 399-409. | 1.6 | 4         |
| 2  | Chronic alcohol exposure induces hepatocyte damage by inducing oxidative stress, SATB2 and stem<br>cellâ€like characteristics, and activating lipogenesis. Journal of Cellular and Molecular Medicine, 2022,<br>26, 2119-2131.                                   | 1.6 | 9         |
| 3  | Riluzole regulates pancreatic cancer cell metabolism by suppressing the Wnt-β-catenin pathway.<br>Scientific Reports, 2022, 12, .                                                                                                                                | 1.6 | 7         |
| 4  | Association of Diabetes Mellitus and Alcohol Abuse with Cancer: Molecular Mechanisms and Clinical Significance. Cells, 2021, 10, 3077.                                                                                                                           | 1.8 | 10        |
| 5  | SATB2 is a novel biomarker and therapeutic target for cancer. Journal of Cellular and Molecular<br>Medicine, 2020, 24, 11064-11069.                                                                                                                              | 1.6 | 21        |
| 6  | αâ€Mangostinâ€encapsulated PLGA nanoparticles inhibit colorectal cancer growth by inhibiting Notch pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 11343-11354.                                                                                   | 1.6 | 36        |
| 7  | The Impact of obesity and diabetes mellitus on pancreatic cancer: Molecular mechanisms and clinical perspectives. Journal of Cellular and Molecular Medicine, 2020, 24, 7706-7716.                                                                               | 1.6 | 26        |
| 8  | Assessment of risk factors, and racial and ethnic differences in hepatocellular carcinoma. JGH Open, 2020, 4, 351-359.                                                                                                                                           | 0.7 | 25        |
| 9  | Higher expression of SATB2 in hepatocellular carcinoma of African Americans determines more<br>aggressive phenotypes than those of Caucasian Americans. Journal of Cellular and Molecular<br>Medicine, 2019, 23, 7999-8009.                                      | 1.6 | 12        |
| 10 | Inhibition of pancreatic cancer stem cell characteristics by αâ€Mangostin: Molecular mechanisms<br>involving Sonic hedgehog and Nanog. Journal of Cellular and Molecular Medicine, 2019, 23, 2719-2730.                                                          | 1.6 | 34        |
| 11 | Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase<br>inhibitor with antioxidant property to enhance learning and memory. European Journal of Medicinal<br>Chemistry, 2019, 163, 116-135.                            | 2.6 | 94        |
| 12 | Design and development of novel p-aminobenzoic acid derivatives as potential cholinesterase<br>inhibitors for the treatment of Alzheimer's disease. Bioorganic Chemistry, 2019, 82, 211-223.                                                                     | 2.0 | 42        |
| 13 | Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival,<br>self-renewal and tumorigenic potential of glioblastoma-initiating cells. Molecular and Cellular<br>Biochemistry, 2019, 454, 11-23.                                 | 1.4 | 45        |
| 14 | Increased Risk of Hepatocellular Carcinoma Associated With Neighborhood Concentrated Disadvantage. Frontiers in Oncology, 2018, 8, 375.                                                                                                                          | 1.3 | 11        |
| 15 | Chronic ethanol exposure of human pancreatic normal ductal epithelial cells induces cancer stem cell phenotype through SATB2. Journal of Cellular and Molecular Medicine, 2018, 22, 3920-3928.                                                                   | 1.6 | 16        |
| 16 | Cellular transformation of human mammary epithelial cells by SATB2. Stem Cell Research, 2017, 19, 139-147.                                                                                                                                                       | 0.3 | 29        |
| 17 | Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing oxidative stress and suppressing sonic hedgehog-Gli-Nanog pathway. Carcinogenesis, 2017, 38, 1047-1056.                                                                            | 1.3 | 59        |
| 18 | SATB2/β-catenin/TCF-LEF pathway induces cellular transformation by generating cancer stem cells in colorectal cancer. Scientific Reports, 2017, 7, 10939.                                                                                                        | 1.6 | 37        |

| #  | Article                                                                                                                                                                                                                  | lF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer<br>stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice. Scientific Reports, 2016,<br>6, 32743. | 1.6 | 62        |
| 20 | Role of SATB2 in human pancreatic cancer: Implications in transformation and a promising biomarker.<br>Oncotarget, 2016, 7, 57783-57797.                                                                                 | 0.8 | 27        |
| 21 | PI3K/AKT/mTOR and sonic hedgehog pathways cooperate together to inhibit human pancreatic cancer stem cell characteristics and tumor growth. Oncotarget, 2015, 6, 32039-32060.                                            | 0.8 | 131       |
| 22 | Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by<br>modulating sonic hedgehog pathway. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11,<br>2061-2070.             | 1.7 | 63        |
| 23 | Recent advances in pancreatic cancer: biology, treatment, and prevention. Biochimica Et Biophysica<br>Acta: Reviews on Cancer, 2015, 1856, 13-27.                                                                        | 3.3 | 60        |
| 24 | Stem Cells in Neurological Disorders: Emerging Therapy with Stunning Hopes. Molecular<br>Neurobiology, 2015, 52, 610-625.                                                                                                | 1.9 | 17        |
| 25 | Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer. Oncotarget, 2015, 6, 3280-3291.                                                  | 0.8 | 134       |
| 26 | Embelin Suppresses Growth of Human Pancreatic Cancer Xenografts, and Pancreatic Cancer Cells<br>Isolated from KrasG12D Mice by Inhibiting Akt and Sonic Hedgehog Pathways. PLoS ONE, 2014, 9, e92161.                    | 1.1 | 41        |
| 27 | Embelin suppresses pancreatic cancer growth by modulating tumor immune microenvironment.<br>Frontiers in Bioscience - Landmark, 2014, 19, 113.                                                                           | 3.0 | 28        |
| 28 | Clinical Implications of miRNAs in Human Diseases. , 2014, , 75-97.                                                                                                                                                      |     | 0         |
| 29 | Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Letters, 2014, 343, 179-189.                                                                         | 3.2 | 191       |
| 30 | Rottlerin suppresses growth of human pancreatic tumors in nude mice, and pancreatic cancer cells isolated from KrasG12D mice. Cancer Letters, 2014, 353, 32-40.                                                          | 3.2 | 26        |
| 31 | Challenges in Stem Cells and Translational Research. , 2014, , 483-501.                                                                                                                                                  |     | Ο         |
| 32 | Sulforaphane regulates self-renewal of pancreatic cancer stem cells through the modulation of<br>Sonic hedgehog–GLI pathway. Molecular and Cellular Biochemistry, 2013, 373, 217-227.                                    | 1.4 | 134       |
| 33 | CANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Letters, 2013, 330, 22-32.                                                                           | 3.2 | 135       |
| 34 | EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice<br>through modulation of FKHRL1/FOXO3a and neuropilin. Molecular and Cellular Biochemistry, 2013,<br>372, 83-94.            | 1.4 | 90        |
| 35 | Ellagic acid inhibits human pancreatic cancer growth in Balb c nude mice. Cancer Letters, 2013, 337, 210-217.                                                                                                            | 3.2 | 89        |
| 36 | NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200. Neuro-Oncology, 2013, 15, 691-706.                    | 0.6 | 87        |

RAKESH K SRIVASTAVA

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular<br>mechanisms. Molecular Cancer, 2013, 12, 171.                                                                                                               | 7.9 | 114       |
| 38 | Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochemical Pharmacology, 2012, 84, 1154-1163.                                                       | 2.0 | 192       |
| 39 | Sonic Hedgehog Signaling Inhibition Provides Opportunities for Targeted Therapy by Sulforaphane in<br>Regulating Pancreatic Cancer Stem Cell Self-Renewal. PLoS ONE, 2012, 7, e46083.                                                                   | 1.1 | 102       |
| 40 | Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. International Journal of Cancer, 2012, 131, 30-40.                                                                | 2.3 | 182       |
| 41 | EGCG Enhances the Therapeutic Potential of Gemcitabine and CP690550 by Inhibiting STAT3 Signaling<br>Pathway in Human Pancreatic Cancer. PLoS ONE, 2012, 7, e31067.                                                                                     | 1.1 | 93        |
| 42 | Hedgehog Signaling Antagonist GDC-0449 (Vismodegib) Inhibits Pancreatic Cancer Stem Cell<br>Characteristics: Molecular Mechanisms. PLoS ONE, 2011, 6, e27306.                                                                                           | 1.1 | 173       |
| 43 | Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Frontiers in Bioscience - Elite, 2011, E3, 515-528.                                                                                            | 0.9 | 109       |
| 44 | Resveratrol Inhibits Pancreatic Cancer Stem Cell Characteristics in Human and KrasG12D Transgenic<br>Mice by Inhibiting Pluripotency Maintaining Factors and Epithelial-Mesenchymal Transition. PLoS ONE,<br>2011, 6, e16530.                           | 1.1 | 257       |
| 45 | Targeting Epigenetic Regulation of miR-34a for Treatment of Pancreatic Cancer by Inhibition of<br>Pancreatic Cancer Stem Cells. PLoS ONE, 2011, 6, e24099.                                                                                              | 1.1 | 236       |
| 46 | Resveratrol Inhibits Growth of Orthotopic Pancreatic Tumors through Activation of FOXO<br>Transcription Factors. PLoS ONE, 2011, 6, e25166.                                                                                                             | 1.1 | 110       |
| 47 | Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical Pharmacology, 2011, 82, 1807-1821.                                                                                               | 2.0 | 1,196     |
| 48 | FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Molecular and Cellular Biochemistry, 2010, 337, 201-212.                                                                                       | 1.4 | 68        |
| 49 | Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. Journal of Molecular Signaling, 2010, 5, 10.                                              | 0.5 | 306       |
| 50 | The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit<br>prostate cancer stem cell characteristics, invasion, migration and epithelial-mesenchymal transition.<br>Journal of Molecular Signaling, 2010, 5, 14. | 0.5 | 177       |
| 51 | Resveratrol Induces Growth Arrest and Apoptosis through Activation of FOXO Transcription Factors in Prostate Cancer Cells. PLoS ONE, 2010, 5, e15288.                                                                                                   | 1.1 | 162       |
| 52 | MS-275 Sensitizes TRAIL-Resistant Breast Cancer Cells, Inhibits Angiogenesis and Metastasis, and<br>Reverses Epithelial-Mesenchymal Transition In vivo. Molecular Cancer Therapeutics, 2010, 9, 3254-3266.                                              | 1.9 | 119       |
| 53 | EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Frontiers in<br>Bioscience - Landmark, 2008, 13, 440.                                                                                                                 | 3.0 | 232       |
| 54 | Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Frontiers in<br>Bioscience - Landmark, 2007, 12, 4839.                                                                                                                  | 3.0 | 296       |

RAKESH K SRIVASTAVA

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Frontiers in<br>Bioscience - Landmark, 2007, 12, 5039.                                                                                                          | 3.0 | 111       |
| 56 | Green tea polyphenols: biology and therapeutic implications in cancer. Frontiers in Bioscience -<br>Landmark, 2007, 12, 4881.                                                                                                                              | 3.0 | 154       |
| 57 | Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with<br>TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Molecular<br>and Cellular Biochemistry, 2007, 304, 273-285. | 1.4 | 102       |
| 58 | Effects of sequential treatments with chemotherapeutic drugs followed by TRAIL on prostate cancer in vitro and in vivo. Prostate, 2005, 62, 165-186.                                                                                                       | 1.2 | 116       |
| 59 | Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and -independent pathways. Oncogene, 2001, 20, 2122-2133.                                                                                                                     | 2.6 | 347       |
| 60 | Bcl-2 and Bcl-X <sub>L</sub> Block Thapsigargin-Induced Nitric Oxide Generation, c-Jun<br>NH <sub>2</sub> -Terminal Kinase Activity, and Apoptosis. Molecular and Cellular Biology, 1999, 19,<br>5659-5674.                                                | 1.1 | 144       |
| 61 | Involvement of Microtubules in the Regulation of Bcl2 Phosphorylation and Apoptosis through<br>Cyclic AMP-Dependent Protein Kinase. Molecular and Cellular Biology, 1998, 18, 3509-3517.                                                                   | 1.1 | 358       |