
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8670995/publications.pdf Version: 2024-02-01

Ζίνινι Υλνι

#	Article	IF	CITATIONS
1	Recent studies of the volatile compounds in tea. Food Research International, 2013, 53, 585-599.	2.9	452
2	Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (<i>Camellia sinensis</i>) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 2019, 59, 2321-2334.	5.4	185
3	Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process. Journal of Agricultural and Food Chemistry, 2016, 64, 5011-5019.	2.4	145
4	Formation of (E)-nerolidol in tea (Camellia sinensis) leaves exposed to multiple stresses during tea manufacturing. Food Chemistry, 2017, 231, 78-86.	4.2	140
5	Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (<i>Camellia sinensis</i>) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition, 2020, 60, 844-858.	5.4	138
6	Regulation of formation of volatile compounds of tea (Camellia sinensis) leaves by single light wavelength. Scientific Reports, 2015, 5, 16858.	1.6	134
7	Does Enzymatic Hydrolysis of Glycosidically Bound Volatile Compounds Really Contribute to the Formation of Volatile Compounds During the Oolong Tea Manufacturing Process?. Journal of Agricultural and Food Chemistry, 2015, 63, 6905-6914.	2.4	121
8	Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chemistry, 2012, 135, 2268-2276.	4.2	114
9	Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. Journal of Proteomics, 2017, 157, 10-17.	1.2	105
10	Studies on the Biochemical Formation Pathway of the Amino Acid <scp>l</scp> -Theanine in Tea (<i>Camellia sinensis</i>) and Other Plants. Journal of Agricultural and Food Chemistry, 2017, 65, 7210-7216.	2.4	97
11	Herbivore-Induced Volatiles from Tea (Camellia sinensis) Plants and Their Involvement in Intraplant Communication and Changes in Endogenous Nonvolatile Metabolites. Journal of Agricultural and Food Chemistry, 2011, 59, 13131-13135.	2.4	94
12	Recent Advances in the Emission and Functions of Plant Vegetative Volatiles. Molecules, 2016, 21, 124.	1.7	93
13	Chinese oolong tea: An aromatic beverage produced under multiple stresses. Trends in Food Science and Technology, 2020, 106, 242-253.	7.8	88
14	Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chemistry, 2017, 237, 356-363.	4.2	82
15	Suppression of free-radicals and protection against H2O2-induced oxidative damage in HPF-1 cell by oxidized phenolic compounds present in black tea. Food Chemistry, 2007, 105, 1349-1356.	4.2	71
16	Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process. Food Chemistry, 2014, 148, 388-395.	4.2	70
17	Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses. Scientific Reports, 2016, 6, 23685.	1.6	70
18	α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia) Tj ET	Qq0 Q Q rgB	T /Qverlock 1

#	Article	IF	CITATIONS
19	Biosynthesis of Jasmine Lactone in Tea (<i>Camellia sinensis</i>) Leaves and Its Formation in Response to Multiple Stresses. Journal of Agricultural and Food Chemistry, 2018, 66, 3899-3909.	2.4	64
20	Comparative analysis of pigments in red and yellow banana fruit. Food Chemistry, 2018, 239, 1009-1018.	4.2	64
21	Characterization of l-phenylalanine metabolism to acetophenone and 1-phenylethanol in the flowers of Camellia sinensis using stable isotope labeling. Journal of Plant Physiology, 2012, 169, 217-225.	1.6	63
22	Effect of Major Tea Insect Attack on Formation of Quality-Related Nonvolatile Specialized Metabolites in Tea (<i>Camellia sinensis</i>) Leaves. Journal of Agricultural and Food Chemistry, 2019, 67, 6716-6724.	2.4	63
23	Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chemistry, 2017, 237, 488-498.	4.2	62
24	Discrimination of Green, Oolong, and Black Teas by GC-MS Analysis of Characteristic Volatile Flavor Compounds. American Journal of Analytical Chemistry, 2014, 05, 620-632.	0.3	62
25	Radical-scavenging abilities and antioxidant properties of theaflavins and their gallate esters in H2O2-mediated oxidative damage system in the HPF-1 cells. Toxicology in Vitro, 2008, 22, 1250-1256.	1.1	61
26	Isolation and identification of compounds from the ethanolic extract of flowers of the tea (Camellia) Tj ETQq0 2009, 42, 1439-1443.	0 0 rgBT /O [.] 2.5	verlock 10 Tf 61
27	Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions. International Journal of Molecular Sciences, 2018, 19, 654.	1.8	57
28	Differential accumulation of specialized metabolite l-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves. Food Chemistry, 2019, 276, 93-100.	4.2	54
29	Differential responses of four biosynthetic pathways of aroma compounds in postharvest strawberry (FragariaĂ—ananassa Duch.) under interaction of light and temperature. Food Chemistry, 2017, 221, 356-364.	4.2	52
30	Occurrence of Functional Molecules in the Flowers of Tea (Camellia sinensis) Plants: Evidence for a Second Resource. Molecules, 2018, 23, 790.	1.7	51
31	An alternative pathway for the formation of aromatic aroma compounds derived from l-phenylalanine via phenylpyruvic acid in tea (Camellia sinensis (L.) O. Kuntze) leaves. Food Chemistry, 2019, 270, 17-24.	4.2	51
32	Enzymatic Reaction-Related Protein Degradation and Proteinaceous Amino Acid Metabolism during the Black Tea (Camellia sinensis) Manufacturing Process. Foods, 2020, 9, 66.	1.9	51
33	Formation of damascenone derived from glycosidically bound precursors in green tea infusions. Food Chemistry, 2010, 123, 601-606.	4.2	49
34	Characteristic Fluctuations in Glycosidically Bound Volatiles during Tea Processing and Identification of Their Unstable Derivatives. Journal of Agricultural and Food Chemistry, 2016, 64, 1151-1157.	2.4	48
35	DELLA and EDS1 Form a Feedback Regulatory Module to Fine-Tune Plant Growth–Defense Tradeoff in Arabidopsis. Molecular Plant, 2019, 12, 1485-1498.	3.9	47
36	Occurrence of Glycosidically Conjugated 1-Phenylethanol and Its Hydrolase β-Primeverosidase in Tea (<i>Camellia sinensis</i>) Flowers. Journal of Agricultural and Food Chemistry, 2014, 62, 8042-8050.	2.4	46

#	Article	IF	CITATIONS
37	Low temperature synergistically promotes wounding-induced indole accumulation by INDUCER OF CBF EXPRESSION-mediated alterations of jasmonic acid signaling in Camellia sinensis. Journal of Experimental Botany, 2020, 71, 2172-2185.	2.4	46
38	Nonaqueous fractionation and overexpression of fluorescentâ€ŧagged enzymes reveals the subcellular sites of Lâ€ŧheanine biosynthesis in tea. Plant Biotechnology Journal, 2021, 19, 98-108.	4.1	43
39	Analysis of coumarin and its glycosidically bound precursor in Japanese green tea having sweet-herbaceous odour. Food Chemistry, 2009, 114, 289-294.	4.2	41
40	Isolation and identification of spermidine derivatives in tea (<i>Camellia sinensis</i>) flowers and their distribution in floral organs. Journal of the Science of Food and Agriculture, 2012, 92, 2128-2132.	1.7	41
41	Formation of α-Farnesene in Tea (Camellia sinensis) Leaves Induced by Herbivore-Derived Wounding and Its Effect on Neighboring Tea Plants. International Journal of Molecular Sciences, 2019, 20, 4151.	1.8	40
42	Functional characterizations of \hat{l}^2 -glucosidases involved in aroma compound formation in tea () Tj ETQq0 0 0 rgBT	lOyerlock	10 Tf 50 54
43	Formation of and changes in phytohormone levels in response to stress during the manufacturing process of oolong tea (Camellia sinensis). Postharvest Biology and Technology, 2019, 157, 110974.	2.9	38
44	Influence of Chloroplast Defects on Formation of Jasmonic Acid and Characteristic Aroma Compounds in Tea (Camellia sinensis) Leaves Exposed to Postharvest Stresses. International Journal of Molecular Sciences, 2019, 20, 1044.	1.8	38
45	Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia) Tj ETQq1 1 0.78 292, 204-210.	4314 rgBT 4.2	7 /Overlock 37
46	Optimisation of supercritical carbon dioxide extraction of essential oil of flowers of tea (<i>Camellia sinensis</i> L.) plants and its antioxidative activity. Journal of the Science of Food and Agriculture, 2014, 94, 316-321.	1.7	35
47	Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research, 2021, 34, 159-171.	4.4	35
48	Regulation of biosynthesis and emission of volatile phenylpropanoids/benzenoids in petunia× hybrida flowers by multi-factors of circadian clock, light, and temperature. Plant Physiology and Biochemistry, 2016, 107, 1-8.	2.8	33
49	Characterization of enzymes specifically producing chiral flavor compounds (R)- and (S)-1-phenylethanol from tea (Camellia sinensis) flowers. Food Chemistry, 2019, 280, 27-33.	4.2	33
50	Involvement of DNA methylation in regulating the accumulation of the aroma compound indole in tea (Camellia sinensis) leaves during postharvest processing. Food Research International, 2021, 142, 110183.	2.9	32
51	Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia) Tj ETQq1 10.	784314 rg 2.9	gBT /Overloc
52	Enzyme Catalytic Efficiencies and Relative Gene Expression Levels of (<i>R</i>)-Linalool Synthase and (<i>S</i>)-Linalool Synthase Determine the Proportion of Linalool Enantiomers in <i>Camellia sinensis</i> var. <i>sinensis</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 10109-10117.	2.4	28
53	Differential Accumulation of Anthocyanins in Dendrobium officinale Stems with Red and Green Peels. International Journal of Molecular Sciences, 2018, 19, 2857.	1.8	26
54	Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chemistry, 2021, 345, 128752.	4.2	26

#	Article	IF	CITATIONS
55	Elucidation of the biochemical pathway of 2-phenylethanol from shikimic acid using isolated protoplasts of rose flowers. Journal of Plant Physiology, 2009, 166, 887-891.	1.6	25
56	Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis. Plant Molecular Biology Reporter, 2015, 33, 253-263.	1.0	25
57	Lycopene cyclases determine high α-/β-carotene ratio and increased carotenoids in bananas ripening at high temperatures. Food Chemistry, 2019, 283, 131-140.	4.2	25
58	Biochemical Pathway of Benzyl Nitrile Derived from <scp>l</scp> -Phenylalanine in Tea (<i>Camellia) Tj ETQq0 0 Chemistry, 2020, 68, 1397-1404.</i>	0 rgBT /0 2.4	verlock 10 Tf 5 25
59	Characterization of <scp>l</scp> -Theanine Hydrolase <i>in Vitro</i> and Subcellular Distribution of Its Specific Product Ethylamine in Tea (<i>Camellia sinensis</i>). Journal of Agricultural and Food Chemistry, 2020, 68, 10842-10851.	2.4	25
60	The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato. Scientific Reports, 2016, 6, 38742.	1.6	24
61	Study of the biochemical formation pathway of aroma compound 1-phenylethanol in tea (Camellia) Tj ETQq1 1	0.784314 4.2	⊦rg₿Ţ /Overloo
62	Plant-specific transcription factor LrTCP4 enhances secondary metabolite biosynthesis in Lycium ruthenicum hairy roots. Plant Cell, Tissue and Organ Culture, 2019, 136, 323-337.	1.2	23
63	Increasing postharvest high-temperatures lead to increased volatile phenylpropanoids/benzenoids accumulation in cut rose (Rosa hybrida) flowers. Postharvest Biology and Technology, 2019, 148, 68-75.	2.9	23
64	Characterization of functional proteases from flowers of tea (Camellia sinensis) plants. Journal of Functional Foods, 2016, 25, 149-159.	1.6	22
65	Comparison of structural, antioxidant and immunoâ€stimulating activities of polysaccharides from <i>Tremella fuciformis</i> in two different regions of China. International Journal of Food Science and Technology, 2018, 53, 1942-1953.	1.3	21
66	Differential Accumulation of Aroma Compounds in Normal Green and Albino-Induced Yellow Tea (Camellia sinensis) Leaves. Molecules, 2018, 23, 2677.	1.7	21
67	The GDP-mannose transporter gene (DoGMT) from Dendrobium officinale is critical for mannan biosynthesis in plant growth and development. Plant Science, 2018, 277, 43-54.	1.7	21
68	Metabolism of Gallic Acid and Its Distributions in Tea (Camellia sinensis) Plants at the Tissue and Subcellular Levels. International Journal of Molecular Sciences, 2020, 21, 5684.	1.8	21
69	Induced biosynthesis of chlorogenic acid in sweetpotato leaves confers the resistance against sweetpotato weevil attack. Journal of Advanced Research, 2020, 24, 513-522.	4.4	21
70	Influence of Plant Growth Retardants on Quality of Codonopsis Radix. Molecules, 2017, 22, 1655.	1.7	20
71	Functional Characterization of An Allene Oxide Synthase Involved in Biosynthesis of Jasmonic Acid and Its Influence on Metabolite Profiles and Ethylene Formation in Tea (Camellia sinensis) Flowers. International Journal of Molecular Sciences, 2018, 19, 2440.	1.8	20
72	Elucidation of (<i>Z</i>)-3-Hexenyl-β-glucopyranoside Enhancement Mechanism under Stresses from the Oolong Tea Manufacturing Process. Journal of Agricultural and Food Chemistry, 2019, 67, 6541-6550.	2.4	20

ZIYIN YANG

#	Article	IF	CITATIONS
73	Characterization of Terpene Synthase from Tea Green Leafhopper Being Involved in Formation of Geraniol in Tea (Camellia sinensis) Leaves and Potential Effect of Geraniol on Insect-Derived Endobacteria. Biomolecules, 2019, 9, 808.	1.8	20
74	Alternative Pathway to the Formation of <i>trans</i> -Cinnamic Acid Derived from <scp>l</scp> -Phenylalanine in Tea (<i>Camellia sinensis</i>) Plants and Other Plants. Journal of Agricultural and Food Chemistry, 2020, 68, 3415-3424.	2.4	19
75	Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock. International Journal of Molecular Sciences, 2017, 18, 2408.	1.8	18
76	Analytical method for metabolites involved in biosynthesis of plant volatile compounds. RSC Advances, 2017, 7, 19363-19372.	1.7	16
77	Increasing Temperature Changes Flux into Multiple Biosynthetic Pathways for 2-Phenylethanol in Model Systems of Tea (<i>Camellia sinensis</i>) and Other Plants. Journal of Agricultural and Food Chemistry, 2019, 67, 10145-10154.	2.4	16
78	Epigenetic Regulation of the Phytohormone Abscisic Acid Accumulation under Dehydration Stress during Postharvest Processing of Tea (<i>Camellia sinensis</i>). Journal of Agricultural and Food Chemistry, 2021, 69, 1039-1048.	2.4	16
79	Elucidation of Differential Accumulation of 1-Phenylethanol in Flowers and Leaves of Tea (Camellia) Tj ETQq1 1	0.784314 1.7	rgBT_/Overloc
80	Insects (<i>Thrips hawaiiensis</i> (Morgan)) change the stereochemical configuration of 1-phenylethanol emitted from tea (<i>Camellia sinensis</i>) flowers. RSC Advances, 2017, 7, 32336-32343.	1.7	15
81	Evaluation of the contribution of trichomes to metabolite compositions of tea (Camellia sinensis) leaves and their products. LWT - Food Science and Technology, 2020, 122, 109023.	2.5	15
82	Strategies for studying <i>in vivo</i> biochemical formation pathways and multilevel distributions of quality or function-related specialized metabolites in tea (<i>Camellia sinensis</i>). Critical Reviews in Food Science and Nutrition, 2022, 62, 429-442.	5.4	14
83	Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). Horticulture Research, 2021, 8, 253.	2.9	14
84	Isolation of mesophyll protoplasts from tea (<i>Camellia sinensis</i>) and localization analysis of enzymes involved in the biosynthesis of specialized metabolites. Beverage Plant Research, 2021, 1, 1-9.	0.6	12
85	Herbivore-Induced (<i>Z</i>)-3-Hexen-1-ol is an Airborne Signal That Promotes Direct and Indirect Defenses in Tea (<i>Camellia sinensis</i>) under Light. Journal of Agricultural and Food Chemistry, 2021, 69, 12608-12620.	2.4	10
86	Synergy Effect of Sodium Acetate and Glycosidically Bound Volatiles on the Release of Volatile Compounds from the Unscented Cut Flower (<i>Delphinium elatum</i> L. "Blue Birdâ€). Journal of Agricultural and Food Chemistry, 2009, 57, 6396-6401.	2.4	9
87	The β-1,3-galactosetransferase gene DoGALT2 is essential for stigmatic mucilage production in Dendrobium officinale. Plant Science, 2019, 287, 110179.	1.7	8
88	Characterization of two tea glutamate decarboxylase isoforms involved in GABA production. Food Chemistry, 2020, 305, 125440.	4.2	8
89	Mechanism underlying the carotenoid accumulation in shaded tea leaves. Food Chemistry: X, 2022, 14, 100323.	1.8	8
90	Optimization of the Production of 1-Phenylethanol Using Enzymes from Flowers of Tea (Camellia) Tj ETQq0 0 () rgBT /Ove	rlock 10 Tf 50

#	Article	IF	CITATIONS
91	Stable Isotope-Labeled Precursor Tracing Reveals that <scp>l</scp> -Alanine is Converted to <scp>l</scp> -Theanine <i>via</i> <scp>l</scp> -Glutamate not Ethylamine in Tea Plants <i>In Vivo</i> . Journal of Agricultural and Food Chemistry, 2021, 69, 15354-15361.	2.4	6
92	Spatial differences in (Z)-3-hexen-1-ol production preferentially reduces Spodoptera litura larva attack on the young leaves of Nicotiana benthamiana. Plant Science, 2016, 252, 367-373.	1.7	5
93	Light synergistically promotes the tea green leafhopper infestation-induced accumulation of linalool oxides and their glucosides in tea (Camellia sinensis). Food Chemistry, 2022, 394, 133460.	4.2	5