
Chunli Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8670954/publications.pdf

Version: 2024-02-01

Снимикамс

#	Article	IF	CITATIONS
1	Enhanced degradation mechanism of tetracycline by MnO2 with the presence of organic acids. Chemosphere, 2022, 286, 131606.	8.2	12
2	Adsorption of acetone, ethyl acetate and toluene by beta zeolite/diatomite composites: preparation, characterization and adsorbability. Environmental Science and Pollution Research, 2022, 29, 80646-80656.	5.3	2
3	Photochemical degradation of \hat{l}^2 -hexachlorocyclohexane in snow and ice. Environmental Science and Pollution Research, 2021, 28, 68244-68250.	5.3	4
4	Photodegradation of dissolved organic matter of chicken manure: Property changes and effects on Zn2+/Cu2+ binding property. Chemosphere, 2021, 276, 130054.	8.2	8
5	Ag NPs decorated C–TiO2/Cd0.5Zn0.5S Z-scheme heterojunction for simultaneous RhB degradation and Cr(VI) reduction. Environmental Pollution, 2021, 286, 117305.	7.5	44
6	Removal of tetracyclines from aqueous solutions by electrocoagulation/pecan nutshell coupling processes: synergistic effect and mechanism. Water Science and Technology, 2020, 82, 683-694.	2.5	4
7	Fabrication of a magnetic ternary ZnFe ₂ O ₄ /TiO ₂ /RGO Z-scheme system with efficient photocatalytic activity and easy recyclability. RSC Advances, 2020, 10, 17293-17301.	3.6	15
8	Fabrication of Bi2S3/MOFs composites without noble metals for enhanced photoreduction of Cr (VI). Separation and Purification Technology, 2020, 241, 116703.	7.9	44
9	Effects of oxalic acid on Cr(VI) reduction by phenols in ice. Environmental Science and Pollution Research, 2019, 26, 29780-29788.	5.3	5
10	Removal of Î ³ -HCH, 1,4-Dichlorobenzene and trichloromethane from air via the adsorption of snow. Atmospheric Environment, 2019, 213, 377-383.	4.1	1
11	Oneâ€Step Hydrothermal Method to Prepare Flowerâ€Like QDs CdSeâ€Loaded BiOCl Sheets as a Promising Tool for Photodegradation. ChemistrySelect, 2019, 4, 9476-9482.	1.5	5
12	Preparation of Cu nanoparticleâ€doped ZIFâ€8/RGO composites for effective photodegradation of organic pollutant. Applied Organometallic Chemistry, 2019, 33, e4978.	3.5	9
13	Photochemical degradation of nitrated PAHs in snow. Atmospheric Environment, 2019, 199, 260-264.	4.1	5
14	Hydrothermal in situ synthesis of Rb and S co-doped Ti-based TiO2 sheet with a thin film showing high photocatalytic activities. RSC Advances, 2018, 8, 11247-11254.	3.6	3
15	Preparation of Corn Stalk-walnut Shell Mix-based Activated Carbon and Its Adsorption of Malachite Green. Chemical Research in Chinese Universities, 2018, 34, 1014-1019.	2.6	6
16	Comparison of the photoconversion of 1-chloronaphthalene and 2,3-dichlornaphthalene in water. Water Science and Technology, 2018, 78, 1946-1955.	2.5	6
17	Hydrothermal synthesis of graphene-ZnTiO3 nanocomposites with enhanced photocatalytic activities. Research on Chemical Intermediates, 2018, 44, 6621-6636.	2.7	12
18	Synthesis of SrTiO ₃ –TiN Nanocomposites with Enhanced Photocatalytic Activity under Simulated Solar Irradiation. Industrial & Engineering Chemistry Research, 2018, 57, 11526-11534.	3.7	5

CHUNLI KANG

#	Article	IF	CITATIONS
19	Adsorption of Basic Dyes Using Walnut Shell-based Biochar Produced by Hydrothermal Carbonization. Chemical Research in Chinese Universities, 2018, 34, 622-627.	2.6	24
20	Photoconversion of 2-Chloronaphthalene in Water. Bulletin of Environmental Contamination and Toxicology, 2017, 99, 415-421.	2.7	6
21	Physiological and morphological responses of <i>Leymus chinensis</i> to salineâ€alkali stress. Grassland Science, 2015, 61, 217-226.	1.1	23
22	Tolerance mechanisms ofLeymus chinensisto salt–alkaline stress. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 723-734.	0.6	4
23	The photoconversion of gamma-hexachlorocyclohexane under UV irradiation in water, snow and ice. Water Science and Technology, 2013, 68, 2479-2484.	2.5	5