
susanne Zeilinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8670882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 2011, 9, 749-759.	13.6	814
2	Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology, 2011, 12, R40.	3.8	594
3	Secondary metabolism in Trichoderma – Chemistry meets genomics. Fungal Biology Reviews, 2016, 30, 74-90.	1.9	271
4	Crel, the carbon catabolite repressor protein fromTrichoderma reesei. FEBS Letters, 1995, 376, 103-107.	1.3	244
5	Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews, 2016, 40, 182-207.	3.9	238
6	Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. Journal of Microbiological Methods, 2010, 81, 187-193.	0.7	236
7	Chitinase Gene Expression during Mycoparasitic Interaction ofTrichoderma harzianumwith Its Host. Fungal Genetics and Biology, 1999, 26, 131-140.	0.9	231
8	The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiology and Molecular Biology Reviews, 2016, 80, 205-327.	2.9	194
9	Trichoderma–Plant–Pathogen Interactions: Advances in Genetics of Biological Control. Indian Journal of Microbiology, 2012, 52, 522-529.	1.5	173
10	Regulation of gene expression in industrial fungi: Trichoderma. Applied Microbiology and Biotechnology, 2003, 60, 515-522.	1.7	166
11	Carbon catabolite repression of xylanase I (xyn1) gene expression in Trichoderma reesei. Molecular Microbiology, 1996, 21, 1273-1281.	1.2	163
12	The G protein \hat{I}_{\pm} subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genetics and Biology, 2005, 42, 749-760.	0.9	158
13	In Vivo Study of Trichoderma -Pathogen-Plant Interactions, Using Constitutive and Inducible Green Fluorescent Protein Reporter Systems. Applied and Environmental Microbiology, 2004, 70, 3073-3081.	1.4	157
14	Improvement of the Fungal Biocontrol Agent Trichoderma atroviride To Enhance both Antagonism and Induction of Plant Systemic Disease Resistance. Applied and Environmental Microbiology, 2005, 71, 3959-3965.	1.4	148
15	Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genetics and Biology, 2007, 44, 1123-1133.	0.9	144
16	Transcriptional Regulation of xyn1 , Encoding Xylanase I, in Hypocrea jecorina. Eukaryotic Cell, 2006, 5, 447-456.	3.4	143
17	Expression of Two Major Chitinase Genes of Trichoderma atroviride (T. harzianum P1) Is Triggered by Different Regulatory Signals. Applied and Environmental Microbiology, 1999, 65, 1858-1863.	1.4	142
18	Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 2009, 10, 567.	1.2	141

#	Article	IF	CITATIONS
19	The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Current Genetics, 2003, 43, 289-295.	0.8	119
20	Signal Transduction by Tga3, a Novel G Protein α Subunit of Trichoderma atroviride. Applied and Environmental Microbiology, 2005, 71, 1591-1597.	1.4	119
21	Functional Analyses of <i>Trichoderma reesei</i> LAE1 Reveal Conserved and Contrasting Roles of This Regulator. G3: Genes, Genomes, Genetics, 2013, 3, 369-378.	0.8	109
22	Different Inducibility of Expression of the Two Xylanase Genes xyn1 and xyn2 in Trichoderma reesei. Journal of Biological Chemistry, 1996, 271, 25624-25629.	1.6	106
23	Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction. Molecular Genetics and Genomics, 2003, 270, 46-55.	1.0	102
24	The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Molecular Genetics and Genomics, 2001, 266, 56-63.	1.0	100
25	Necrotrophic Mycoparasites and Their Genomes. Microbiology Spectrum, 2017, 5, .	1.2	94
26	Two Adjacent Protein Binding Motifs in the cbh2(Cellobiohydrolase II-encoding) Promoter of the Fungus Hypocrea jecorina (Trichoderma reesei) Cooperate in the Induction by Cellulose. Journal of Biological Chemistry, 1998, 273, 34463-34471.	1.6	84
27	A putative terpene cyclase, vir4, is responsible for the biosynthesis of volatile terpene compounds in the biocontrol fungus Trichoderma virens. Fungal Genetics and Biology, 2013, 56, 67-77.	0.9	81
28	Conditions of formation, purification, and characterization of an alpha-galactosidase of Trichoderma reesei RUT C-30. Applied and Environmental Microbiology, 1993, 59, 1347-1353.	1.4	80
29	The Comprehensive Peptaibiotics Database. Chemistry and Biodiversity, 2013, 10, 734-743.	1.0	74
30	Trichoderma Biocontrol: Signal Transduction Pathways Involved in Host Sensing and Mycoparasitism. Gene Regulation and Systems Biology, 2007, 1, GRSB.S397.	2.3	73
31	The seven-transmembrane receptor Gpr1 governs processes relevant for the antagonistic interaction of Trichoderma atroviride with its host. Microbiology (United Kingdom), 2012, 158, 107-118.	0.7	70
32	Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genetics and Biology, 2004, 41, 877-887.	0.9	69
33	Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews, 2022, 39, 15-33.	1.9	68
34	Gene disruption in Trichoderma atroviride via Agrobacterium -mediated transformation. Current Genetics, 2004, 45, 54-60.	0.8	67
35	Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. Current Genetics, 2008, 54, 283-299.	0.8	64

Necrotrophic Mycoparasites and Their Genomes. , 0, , 1005-1026.

#	Article	IF	CITATIONS
37	Transcriptional Regulation of xyn2 in Hypocrea jecorina. Eukaryotic Cell, 2003, 2, 150-158.	3.4	59
38	The Peptaibiotics Database – A Comprehensive Online Resource. Chemistry and Biodiversity, 2015, 12, 743-751.	1.0	57
39	The Transcription Factor Ste12 Mediates the Regulatory Role of the Tmk1 MAP Kinase in Mycoparasitism and Vegetative Hyphal Fusion in the Filamentous Fungus Trichoderma atroviride. PLoS ONE, 2014, 9, e111636.	1.1	48
40	Comparative analysis of the repertoire of G protein-coupled receptors of three species of the fungal genus Trichoderma. BMC Microbiology, 2013, 13, 108.	1.3	41
41	Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites. Fungal Biology, 2014, , .	0.3	38
42	How a Mycoparasite Employs G-Protein Signaling: Using the Example of <i>Trichoderma</i> . Journal of Signal Transduction, 2010, 2010, 1-8.	2.0	35
43	Visualizing fungal metabolites during mycoparasitic interaction by MALDI mass spectrometry imaging. Proteomics, 2016, 16, 1742-1746.	1.3	34
44	Cellulase-poor xylanases produced by Trichoderma reesei RUT C-30 on hemicellulose substrates. Applied Microbiology and Biotechnology, 1992, 38, 315.	1.7	31
45	Chemotropism Assays for Plant Symbiosis and Mycoparasitism Related Compound Screening in Trichoderma atroviride. Frontiers in Microbiology, 2020, 11, 601251.	1.5	27
46	The Lipoxygenase Lox1 Is Involved in Light―and Injury-Response, Conidiation, and Volatile Organic Compound Biosynthesis in the Mycoparasitic Fungus Trichoderma atroviride. Frontiers in Microbiology, 2020, 11, 2004.	1.5	26
47	Profiling of trichorzianines in culture samples of <i>Trichoderma atroviride</i> by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 3963-3970.	0.7	25
48	The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride. Scientific Reports, 2018, 8, 12064.	1.6	25
49	Characterisation of the peptaibiome of the biocontrol fungus <i>Trichoderma atroviride</i> by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1889-1898.	0.7	23
50	Ca2+-calmodulin antagonists interfere with xylanase formation and secretion in Trichoderma reesei. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1403, 281-289.	1.9	22
51	Generation of Trichoderma atroviride mutants with constitutively activated G protein signaling by using geneticin resistance as selection marker. BMC Research Notes, 2012, 5, 641.	0.6	20
52	The Trichoderma atroviride Strains P1 and IMI 206040 Differ in Their Light-Response and VOC Production. Molecules, 2020, 25, 208.	1.7	19
53	Molecular Characterization of a Cellulase-Negative Mutant of Hypocrea jecorina. Biochemical and Biophysical Research Communications, 2000, 277, 581-588.	1.0	15
54	Influence of Different Light Regimes on the Mycoparasitic Activity and 6-Pentyl-α-pyrone Biosynthesis in Two Strains of Trichoderma atroviride. Pathogens, 2020, 9, 860.	1.2	15

#	Article	IF	CITATIONS
55	Secondary Metabolites of Mycoparasitic Fungi. , 0, , .		14
56	Stress-Activated Protein Kinase Signalling Regulates Mycoparasitic Hyphal-Hyphal Interactions in Trichoderma atroviride. Journal of Fungi (Basel, Switzerland), 2021, 7, 365.	1.5	14
57	Overexpression of an aquaglyceroporin gene in Trichoderma harzianum affects stress tolerance, pathogen antagonism and Phaseolus vulgaris development. Biological Control, 2018, 126, 185-191.	1.4	11
58	Monitoring the volatile language of fungi using gas chromatography-ion mobility spectrometry. Analytical and Bioanalytical Chemistry, 2021, 413, 3055-3067.	1.9	10
59	Microbiota Associated with Different Developmental Stages of the Dry Rot Fungus Serpula lacrymans. Journal of Fungi (Basel, Switzerland), 2021, 7, 354.	1.5	10
60	Genetic Transformation of Filamentous Fungi: Achievements and Challenges. Grand Challenges in Biology and Biotechnology, 2020, , 123-164.	2.4	8
61	Application of Membrane and Cell Wall Selective Fluorescent Dyes for Live-Cell Imaging of Filamentous Fungi. Journal of Visualized Experiments, 2019, , .	0.2	7
62	The TOR kinase pathway is relevant for nitrogen signaling and antagonism of the mycoparasite Trichoderma atroviride. PLoS ONE, 2021, 16, e0262180.	1.1	7
63	The GPI-Anchored GH76 Protein Dfg5 Affects Hyphal Morphology and Osmoregulation in the Mycoparasite Trichoderma atroviride and Is Interconnected With MAPK Signaling. Frontiers in Microbiology, 2021, 12, 601113.	1.5	6
64	Sensing and regulation of mycoparasitism-relevant processes in Trichoderma. , 2020, , 39-55.		5
65	Temporal Filtering to Improve Single Molecule Identification in High Background Samples. Molecules, 2018, 23, 3338.	1.7	4
66	Resistance Marker- and Gene Gun-Mediated Transformation of Trichoderma reesei. Methods in Molecular Biology, 2021, 2234, 55-62.	0.4	3
67	Single-Molecule Localization Microscopy to Study Protein Organization in the Filamentous Fungus Trichoderma atroviride. Molecules, 2020, 25, 3199.	1.7	1
68	Microbial Applications. , 2016, , .		1
69	Insights into Signaling Pathways of Antagonistic Trichoderma Species. , 2014, , 465-476.		Ο
70	Visualizing Signaling Complexes in Filamentous Fungi. Biophysical Journal, 2017, 112, 146a.	0.2	0
71	Fungal Secondary Metabolism. , 2021, , 54-63.		0
72	Signal Transduction in Fungi. Mycology, 2003, , .	0.5	0

0

#	Article	IF	CITATIONS
73	Biotechnological Innovations through Fungi. Mycosphere, 2016, 7, 1490.	1.9	Ο

74 Fighting Fungi with Fungi: Utilising Chemical Warfare for Human Benefit. , 2020, , .