
Xue Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8670816/publications.pdf Version: 2024-02-01

XUE 7HAO

#	Article	IF	CITATIONS
1	Synergistic effects of polysaccharide addition-ultrasound treatment on the emulsified properties of low-salt myofibrillar protein. Food Hydrocolloids, 2022, 123, 107143.	10.7	48
2	Proteome Analysis Using Isobaric Tags for Relative and Absolute Analysis Quantitation (iTRAQ) Reveals Alterations in Stress-Induced Dysfunctional Chicken Muscle. Journal of Agricultural and Food Chemistry, 2017, 65, 2913-2922.	5.2	43
3	Application of isoelectric solubilization/precipitation processing to improve gelation properties of protein isolated from pale, soft, exudative (PSE)-like chicken breast meat. LWT - Food Science and Technology, 2016, 72, 141-148.	5.2	40
4	Insight into the oil polarity impact on interfacial properties of myofibrillar protein. Food Hydrocolloids, 2022, 128, 107563.	10.7	38
5	A comparative study of functional properties of normal and wooden breast broiler chicken meat with NaCl addition. Poultry Science, 2017, 96, 3473-3481.	3.4	37
6	Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation. Food Chemistry, 2020, 319, 126574.	8.2	37
7	Trace the difference driven by unfolding-refolding pathway of myofibrillar protein: Emphasizing the changes on structural and emulsion properties. Food Chemistry, 2022, 367, 130688.	8.2	37
8	Structural and solubility properties of pale, soft and exudative (PSE)-like chicken breast myofibrillar protein: Effect of glycosylation. LWT - Food Science and Technology, 2018, 95, 209-215.	5.2	36
9	Effects of different ultrasound frequencies on the structure, rheological and functional properties of myosin: Significance of quorum sensing. Ultrasonics Sonochemistry, 2020, 69, 105268.	8.2	35
10	Covalent chemical modification of myofibrillar proteins to improve their gelation properties: A systematic review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 924-959.	11.7	34
11	Physiochemical properties, protein and metabolite profiles of muscle exudate of chicken meat affected by wooden breast myopathy. Food Chemistry, 2020, 316, 126271.	8.2	32
12	Use of an isoelectric solubilization/precipitation process to modify the functional properties of PSE (pale, soft, exudative)-like chicken meat protein: A mechanistic approach. Food Chemistry, 2018, 248, 201-209.	8.2	30
13	Effect of high intensity ultrasound on the gelation properties of wooden breast meat with different NaCl contents. Food Chemistry, 2021, 347, 129031.	8.2	28
14	Effect of salt content on gelation of normal and wooden breast myopathy chicken <i>pectoralis major</i> meat batters. International Journal of Food Science and Technology, 2017, 52, 2068-2077.	2.7	27
15	Oxidative stability of isoelectric solubilization/precipitation-isolated PSE-like chicken protein. Food Chemistry, 2019, 283, 646-655.	8.2	24
16	Comparison of the interfacial properties of native and refolded myofibrillar proteins subjected to pH-shifting. Food Chemistry, 2022, 380, 131734.	8.2	24
17	An optimized approach to recovering O/W interfacial myofibrillar protein: Emphasizing on interface-induced structural changes. Food Hydrocolloids, 2022, 124, 107194.	10.7	21
18	Interfacial rheology of alkali pH-shifted myofibrillar protein at O/W interface and impact of Tween 20 displacement. Food Hydrocolloids, 2022, 124, 107275.	10.7	19

Xue Zhao

#	Article	IF	CITATIONS
19	Changes of Molecular Forces During Thermo-Gelling of Protein Isolated from PSE-Like Chicken Breast by Various Isoelectric Solubilization/Precipitation Extraction Strategies. Food and Bioprocess Technology, 2017, 10, 1240-1247.	4.7	16
20	Isoelectric solubilization/precipitation processing modified sarcoplasmic protein from pale, soft, exudative-like chicken meat. Food Chemistry, 2019, 287, 1-10.	8.2	15
21	Temperature-dependent in vitro digestion properties of isoelectric solubilization/precipitation (ISP)-isolated PSE-like chicken protein. Food Chemistry, 2021, 343, 128501.	8.2	13
22	Gelation properties of goose liver protein recovered by isoelectric solubilisation/precipitation process. International Journal of Food Science and Technology, 2018, 53, 356-364.	2.7	12
23	Negative impacts <i>o</i> f <i>in-vitro</i> oxidative stress on the quality of heat-induced myofibrillar protein gelation during refrigeration. International Journal of Food Properties, 2018, 21, 2205-2217.	3.0	9
24	Phosphoproteome analysis of sarcoplasmic and myofibrillar proteins in stress-induced dysfunctional broiler pectoralis major muscle. Food Chemistry, 2020, 319, 126531.	8.2	9
25	Comparison of the Acidic and Alkaline Treatment on Emulsion Composite Gel Properties of the Proteins Recovered from Chicken Breast by Isoelectric Solubilization/Precipitation Process. Journal of Food Processing and Preservation, 2017, 41, e12884.	2.0	7
26	Enhanced cytokine expression and upregulation of inflammatory signaling pathways in broiler chickens affected by wooden breast myopathy. Journal of the Science of Food and Agriculture, 2021, 101, 279-286.	3.5	7
27	Cold non-enzymatic browning of glucosamine in the presence of metmyoglobin induces glucosone and deoxymyoglobin formation. Food Chemistry, 2020, 305, 125504.	8.2	4