Geert J Boons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8670640/publications.pdf

Version: 2024-02-01

351 papers 20,818 citations

72 h-index 20023 121 g-index

410 all docs

410 docs citations

410 times ranked

18622 citing authors

#	Article	IF	CITATIONS
1	Influence of saccharide modifications on heparin lyase III substrate specificities. Glycobiology, 2022, 32, 208-217.	1.3	3
2	Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nature Chemical Biology, 2022, 18, 81-90.	3.9	141
3	<i>N</i> -Glycolylneuraminic Acid Binding of Avian and Equine H7 Influenza A Viruses. Journal of Virology, 2022, 96, jvi0212021.	1.5	14
4	Pathobiology of highly pathogenic H5 avian influenza viruses in naturally infected Galliformes and Anseriformes in France during winter 2015–2016. Veterinary Research, 2022, 53, 11.	1.1	11
5	Detection of Bacterial α-l-Fucosidases with an Ortho-Quinone Methide-Based Probe and Mapping of the Probe-Protein Adducts. Molecules, 2022, 27, 1615.	1.7	9
6	Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathogens, 2022, 18, e1010340.	2.1	13
7	Guillain-Barré syndrome: expanding the concept of molecular mimicry. Trends in Immunology, 2022, 43, 296-308.	2.9	24
8	Synthetic <i>O</i> -Acetylated Sialosides and their Acetamido-deoxy Analogues as Probes for Coronaviral Hemagglutinin-esterase Recognition. Journal of the American Chemical Society, 2022, 144, 424-435.	6.6	4
9	Novel subtype of mucopolysaccharidosis caused by arylsulfatase K (ARSK) deficiency. Journal of Medical Genetics, 2022, 59, 957-964.	1.5	29
10	Synthetic <i>O</i> -Acetyl- <i>N</i> -glycolylneuraminic Acid Oligosaccharides Reveal Host-Associated Binding Patterns of Coronaviral Glycoproteins. ACS Infectious Diseases, 2022, 8, 1041-1050.	1.8	3
11	Conjugation of a Tollâ€Like Receptor Agonist to Glycans of an HIV Nativeâ€Like Envelope Trimer Preserves Neutralization Epitopes. ChemBioChem, 2022, 23, .	1.3	4
12	Synthetic Heparan Sulfate Hydrogels Regulate Neurotrophic Factor Signaling and Neuronal Network Activity. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28476-28488.	4.0	6
13	Molecular dynamics-based descriptors of 3-O-Sulfated Heparan sulfate as contributors of protein binding specificity. Computational Biology and Chemistry, 2022, 99, 107716.	1.1	3
14	Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nature Communications, 2022, 13, .	5.8	23
15	Identification of Isomeric <i>N</i> â€Glycans by Conformer Distribution Fingerprinting using Ion Mobility Mass Spectrometry. Chemistry - A European Journal, 2021, 27, 2149-2154.	1.7	15
16	The 3- <i>O</i> -sulfation of heparan sulfate modulates protein binding and lyase degradation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
17	Multimerization- and glycosylation-dependent receptor binding of SARS-CoV-2 spike proteins. PLoS Pathogens, 2021, 17, e1009282.	2.1	42
18	Synthetic O-acetylated sialosides facilitate functional receptor identification for human respiratory viruses. Nature Chemistry, 2021, 13, 496-503.	6.6	31

#	Article	IF	CITATIONS
19	N-Glycolylneuraminic Acid in Animal Models for Human Influenza A Virus. Viruses, 2021, 13, 815.	1.5	12
20	Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2. ACS Central Science, 2021, 7, 1009-1018.	5.3	113
21	Chemoenzymatic Synthesis of Complex N â€Glycans of the Parasite S. mansoni to Examine the Importance of Epitope Presentation on DCâ€SIGN recognition. Angewandte Chemie, 2021, 133, 19436-19445.	1.6	1
22	Selective 13 C‣abels on Repeating Glycan Oligomers to Reveal Protein Binding Epitopes through NMR: Polylactosamine Binding to Galectins. Angewandte Chemie, 2021, 133, 18925-18930.	1.6	3
23	Selective ¹³ Câ€Labels on Repeating Glycan Oligomers to Reveal Protein Binding Epitopes through NMR: Polylactosamine Binding to Galectins. Angewandte Chemie - International Edition, 2021, 60, 18777-18782.	7.2	14
24	Chemoenzymatic Synthesis of Complex $\langle i \rangle N \langle i \rangle \hat{a} \in G$ lycans of the Parasite $\langle i \rangle S$. mansoni $\langle i \rangle$ to Examine the Importance of Epitope Presentation on DC $\hat{a} \in G$ IGN recognition. Angewandte Chemie - International Edition, 2021, 60, 19287-19296.	7.2	12
25	Structure, Immunogenicity, and Conformation-Dependent Receptor Binding of the Postfusion Human Metapneumovirus F Protein. Journal of Virology, 2021, 95, e0059321.	1.5	11
26	Metabolic Labeling of Legionaminic Acid in Flagellin Glycosylation of <i>Campylobacter jejuni</i> Identifies Maf4 as a Putative Legionaminyl Transferase. Angewandte Chemie, 2021, 133, 25015-25020.	1.6	0
27	Hydrolytic (In)stability of Methacrylate Esters in Covalently Cross-Linked Hydrogels Based on Chondroitin Sulfate and Hyaluronic Acid Methacrylate. ACS Omega, 2021, 6, 26302-26310.	1.6	7
28	Metabolic Labeling of Legionaminic Acid in Flagellin Glycosylation of <i>Campylobacter jejuni</i> Identifies Maf4 as a Putative Legionaminyl Transferase. Angewandte Chemie - International Edition, 2021, 60, 24811-24816.	7.2	12
29	Glycan remodeled erythrocytes facilitate antigenic characterization of recent A/H3N2 influenza viruses. Nature Communications, 2021, 12, 5449.	5.8	35
30	Functionality of the putative surface glycoproteins of the Wuhan spiny eel influenza virus. Nature Communications, 2021, 12, 6161.	5.8	6
31	Dissecting structure-function of 3-O-sulfated heparin and engineered heparan sulfates. Science Advances, 2021, 7, eabl6026.	4.7	23
32	Role of glycosylation on the ensemble of conformations in the MUC1 immunodominant epitope. Journal of Peptide Science, 2020, 26, e3229.	0.8	3
33	Synthesis of monophosphoryl lipid A using 2-naphtylmethyl ethers as permanent protecting groups. Carbohydrate Research, 2020, 498, 108152.	1.1	1
34	Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25759-25770.	3.3	48
35	Modular Synthesis of Heparan Sulfate Oligosaccharides Having <i>N</i> -Acetyl and <i>N</i> -Sulfate Moieties. Journal of Organic Chemistry, 2020, 85, 16082-16098.	1.7	23
36	Cryogenic Infrared Spectroscopy Reveals Structural Modularity in the Vibrational Fingerprints of Heparan Sulfate Diastereomers. Analytical Chemistry, 2020, 92, 10228-10232.	3.2	20

#	Article	IF	CITATIONS
37	Characterizing human \hat{l}_{\pm} -1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases. Journal of Biological Chemistry, 2020, 295, 17027-17045.	1.6	19
38	Hierarchical Multivalent Effects Control Influenza Host Specificity. ACS Central Science, 2020, 6, 2311-2318.	5.3	20
39	Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. PLoS Pathogens, 2020, 16, e1008816.	2.1	19
40	Chemoenzymatic Synthesis of <i>Campylobacter jejuni</i> Lipo-oligosaccharide Core Domains to Examine Guillain–Barré Syndrome Serum Antibody Specificities. Journal of the American Chemical Society, 2020, 142, 19611-19621.	6.6	27
41	Phenotypic Effects of Substitutions within the Receptor Binding Site of Highly Pathogenic Avian Influenza H5N1 Virus Observed during Human Infection. Journal of Virology, 2020, 94, .	1.5	8
42	MASP-2 Is a Heparin-Binding Protease; Identification of Blocking Oligosaccharides. Frontiers in Immunology, 2020, 11, 732.	2.2	7
43	Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nature Communications, 2020, $11,1481$.	5.8	39
44	Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Advances, 2020, 4, 2967-2978.	2.5	45
45	A redox-active switch in fructosamine-3-kinases expands the regulatory repertoire of the protein kinase superfamily. Science Signaling, 2020, 13, .	1.6	12
46	Mono―and Diâ€Fucosylated Glycans of the Parasitic Worm <i>S. mansoni</i> are Recognized Differently by the Innate Immune Receptor DCâ€SIGN. Chemistry - A European Journal, 2020, 26, 15605-15612.	1.7	8
47	Toxin-neutralizing antibodies elicited by naturally acquired cutaneous anthrax are elevated following severe disease and appear to target conformational epitopes. PLoS ONE, 2020, 15, e0230782.	1.1	7
48	Arylsulfatase K inactivation causes mucopolysaccharidosis due to deficient glucuronate desulfation of heparan and chondroitin sulfate. Biochemical Journal, 2020, 477, 3433-3451.	1.7	16
49	Fully Synthetic Heparan Sulfate-Based Neural Tissue Construct That Maintains the Undifferentiated State of Neural Stem Cells. ACS Chemical Biology, 2019, 14, 1921-1929.	1.6	11
50	Advancing Solutions to the Carbohydrate Sequencing Challenge. Journal of the American Chemical Society, 2019, 141, 14463-14479.	6.6	108
51	Sequencing Heparan Sulfate Using HILIC LC-NETD-MS/MS. Analytical Chemistry, 2019, 91, 11738-11746.	3.2	22
52	Chemoenzymatic synthesis of the oligosaccharide moiety of the tumor-associated antigen disialosyl globopentaosylceramide. Organic and Biomolecular Chemistry, 2019, 17, 7304-7308.	1.5	15
53	Protectingâ€Groupâ€Controlled Enzymatic Glycosylation of Oligo―N â€Acetyllactosamine Derivatives. Angewandte Chemie, 2019, 131, 10657-10662.	1.6	6
54	Salt-free fractionation of complex isomeric mixtures of glycosaminoglycan oligosaccharides compatible with ESI-MS and microarray analysis. Scientific Reports, 2019, 9, 16566.	1.6	7

#	Article	IF	CITATIONS
55	Ionâ€Mobility Spectrometry Can Assign Exact Fucosyl Positions in Glycans and Prevent Misinterpretation of Massâ€Spectrometry Data After Gasâ€Phase Rearrangement. Angewandte Chemie, 2019, 131, 17780-17784.	1.6	5
56	Ionâ€Mobility Spectrometry Can Assign Exact Fucosyl Positions in Glycans and Prevent Misinterpretation of Massâ€Spectrometry Data After Gasâ€Phase Rearrangement. Angewandte Chemie - International Edition, 2019, 58, 17616-17620.	7.2	18
57	Human coronaviruses OC43 and HKU1 bind to 9- $\langle i \rangle$ O $\langle i \rangle$ -acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2681-2690.	3.3	335
58	Enhanced Inhibition of Influenza A Virus Adhesion by Di- and Trivalent Hemagglutinin Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 6398-6404.	2.9	23
59	Structural basis for human coronavirus attachment to sialic acid receptors. Nature Structural and Molecular Biology, 2019, 26, 481-489.	3.6	475
60	The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathogens, 2019, 15, e1007860.	2.1	45
61	N-Glycolylneuraminic Acid as a Receptor for Influenza A Viruses. Cell Reports, 2019, 27, 3284-3294.e6.	2.9	78
62	Protectingâ€Groupâ€Controlled Enzymatic Glycosylation of Oligoâ€ <i>N</i> à€Acetyllactosamine Derivatives. Angewandte Chemie - International Edition, 2019, 58, 10547-10552.	7.2	27
63	The three-dimensional structure and recognition mechanism of Manduca sexta peptidoglycan recognition protein-1. Insect Biochemistry and Molecular Biology, 2019, 108, 44-52.	1.2	8
64	Guinea Fowl Coronavirus Diversity Has Phenotypic Consequences for Glycan and Tissue Binding. Journal of Virology, 2019, 93, .	1.5	17
65	An automated platform for the enzyme-mediated assembly of complex oligosaccharides. Nature Chemistry, 2019, 11, 229-236.	6.6	124
66	Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. Journal of Molecular Biology, 2019, 431, 842-856.	2.0	36
67	Streptococcal dTDPâ€Lâ€rhamnose biosynthesis enzymes: functional characterization and lead compound identification. Molecular Microbiology, 2019, 111, 951-964.	1.2	42
68	Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nature Chemistry, 2019, 11, 161-169.	6.6	94
69	Identification of a secondary binding site in human macrophage galactose-type lectin by microarray studies: Implications for the molecular recognition of its ligands. Journal of Biological Chemistry, 2019, 294, 1300-1311.	1.6	31
70	Controlled Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides. Angewandte Chemie - International Edition, 2018, 57, 5340-5344.	7.2	49
71	Molecular Basis for the Attachment of S-Layer Proteins to the Cell Wall of <i>Bacillus anthracis</i> Biochemistry, 2018, 57, 1949-1953.	1.2	21
72	A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction. Journal of the American Society for Mass Spectrometry, 2018, 29, 1153-1165.	1.2	12

#	Article	IF	CITATIONS
73	Human $\langle i \rangle N \langle i \rangle$ -acetylglucosaminyltransferase II substrate recognition uses a modular architecture that includes a convergent exosite. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4637-4642.	3.3	37
74	Software for Peak Finding and Elemental Composition Assignment for Glycosaminoglycan Tandem Mass Spectra. Molecular and Cellular Proteomics, 2018, 17, 1448-1456.	2.5	21
75	Chemoenzymatic Synthesis of Asymmetrical Multiâ€Antennary <i>N</i> â€Glycans to Dissect Glycanâ€Mediated Interactions between Human Sperm and Oocytes. Chemistry - A European Journal, 2018, 24, 7970-7975.	1.7	13
76	Mass spectrometry for glycan biomarker discovery. TrAC - Trends in Analytical Chemistry, 2018, 100, 7-14.	5.8	34
77	Controlled Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides. Angewandte Chemie, 2018, 130, 5438-5442.	1.6	10
78	Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. Journal of Extracellular Vesicles, 2018, 7, 1442985.	5.5	173
79	Negative Electron Transfer Dissociation Sequencing of 3- <i>O</i> Sulfation-Containing Heparan Sulfate Oligosaccharides. Journal of the American Society for Mass Spectrometry, 2018, 29, 1262-1272.	1.2	20
80	PatB1 is an O-acetyltransferase that decorates secondary cell wall polysaccharides. Nature Chemical Biology, 2018, 14, 79-85.	3.9	37
81	Affinity capillary electrophoresis for the assessment of binding affinity of carbohydrateâ€based cholera toxin inhibitors. Electrophoresis, 2018, 39, 344-347.	1.3	11
82	Synthesis and Immunological Evaluation of a Multicomponent Cancer Vaccine Candidate Containing a Long MUC1 Glycopeptide. ChemBioChem, 2018, 19, 121-125.	1.3	14
83	4,6- <i>O</i> -Pyruvyl Ketal Modified <i>N</i> -Acetylmannosamine of the Secondary Cell Wall Polysaccharide of <i>Bacillus anthracis</i> Is the Anchoring Residue for Its Surface Layer Proteins. Journal of the American Chemical Society, 2018, 140, 17079-17085.	6.6	17
84	Detection of mucopolysaccharidosis III-A (Sanfilippo Syndrome-A) in dried blood spots (DBS) by tandem mass spectrometry. Molecular Genetics and Metabolism, 2018, 125, 59-63.	0.5	13
85	Paramagnetic Tag for Glycosylation Sites in Glycoproteins: Structural Constraints on Heparan Sulfate Binding to Robo1. ACS Chemical Biology, 2018, 13, 2560-2567.	1.6	12
86	Defective mucin-type glycosylation on \hat{l}_{\pm} -dystroglycan in COG-deficient cells increases its susceptibility to bacterial proteases. Journal of Biological Chemistry, 2018, 293, 14534-14544.	1.6	3
87	Substrate Binding by the Second Sialic Acid-Binding Site of Influenza A Virus N1 Neuraminidase Contributes to Enzymatic Activity. Journal of Virology, 2018, 92, .	1.5	30
88	Improved de novo sequencing of heparin/heparan sulfate oligosaccharides by propionylation of sites of sulfation. Carbohydrate Research, 2018, 465, 16-21.	1.1	16
89	Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology, 2017, 27, 677-687.	1.3	45
90	Arylsulfatase K is the Lysosomal 2-Sulfoglucuronate Sulfatase. ACS Chemical Biology, 2017, 12, 367-373.	1.6	12

#	Article	IF	Citations
91	Human milk oligosaccharides inhibit growth of group B Streptococcus. Journal of Biological Chemistry, 2017, 292, 11243-11249.	1.6	129
92	Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6954-6959.	3.3	118
93	Single Stage Tandem Mass Spectrometry Assignment of the C-5 Uronic Acid Stereochemistry in Heparan Sulfate Tetrasaccharides using Electron Detachment Dissociation. Journal of the American Society for Mass Spectrometry, 2017, 28, 1741-1750.	1.2	27
94	Chemoenzymatic Approach for the Preparation of Asymmetric Bi-, Tri-, and Tetra-Antennary <i>N</i> -Glycans from a Common Precursor. Journal of the American Chemical Society, 2017, 139, 1011-1018.	6.6	72
95	Protein O-Linked Mannose \hat{l}^2 -1,4-N-Acetylglucosaminyl-transferase 2 (POMGNT2) Is a Gatekeeper Enzyme for Functional Glycosylation of \hat{l}_2 -Dystroglycan. Journal of Biological Chemistry, 2017, 292, 2101-2109.	1.6	27
96	Improved isolation and characterization procedure of sialylglycopeptide from egg yolk powder. Carbohydrate Research, 2017, 452, 122-128.	1.1	68
97	Perdeuterated and 13C-enriched myo-inositol for DNP assisted monitoring of enzymatic phosphorylation by inositol-3-kinase. Chemical Communications, 2017, 53, 12398-12401.	2.2	4
98	Mining High-Complexity Motifs in Glycans: A New Language To Uncover the Fine Specificities of Lectins and Glycosidases. Analytical Chemistry, 2017, 89, 12342-12350.	3.2	28
99	Cell-Surface Glyco-Engineering by Exogenous Enzymatic Transfer Using a Bifunctional CMP-Neu5Ac Derivative. Journal of the American Chemical Society, 2017, 139, 13342-13348.	6.6	50
100	Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nature Communications, 2017, 8, 1483.	5.8	67
101	Heparan Sulfate Microarray Reveals That Heparan Sulfate–Protein Binding Exhibits Different Ligand Requirements. Journal of the American Chemical Society, 2017, 139, 9534-9543.	6.6	106
102	Synthesis of a Glycosylphosphatidylinositol Anchor Derived from <i>Leishmania donovani</i> That Can Be Functionalized by Cu-Catalyzed Azideâ€"Alkyne Cycloadditions. Organic Letters, 2017, 19, 3827-3830.	2.4	19
103	Gas-Phase Analysis of the Complex of Fibroblast GrowthFactor 1 with Heparan Sulfate: A Traveling Wave Ion Mobility Spectrometry (TWIMS) and Molecular Modeling Study. Journal of the American Society for Mass Spectrometry, 2017, 28, 96-109.	1.2	18
104	MUC1 Vaccines, Comprised of Glycosylated or Non-Glycosylated Peptides or Tumor-Derived MUC1, Can Circumvent Immunoediting to Control Tumor Growth in MUC1 Transgenic Mice. PLoS ONE, 2016, 11, e0145920.	1.1	31
105	Labelâ€Free Detection of Glycan–Protein Interactions for Array Development by Surfaceâ€Enhanced Raman Spectroscopy (SERS). Chemistry - A European Journal, 2016, 22, 11180-11185.	1.7	18
106	Synthetic Receptors for the Highâ€Affinity Recognition of Oâ€GlcNAc Derivatives. Angewandte Chemie - International Edition, 2016, 55, 3387-3392.	7.2	86
107	Synthetic Receptors for the Highâ€Affinity Recognition of Oâ€GlcNAc Derivatives. Angewandte Chemie, 2016, 128, 3448-3453.	1.6	36
108	Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans. Canadian Journal of Chemistry, 2016, 94, 927-935.	0.6	69

#	Article	IF	Citations
109	Coronavirus receptor switch explained from the stereochemistry of protein–carbohydrate interactions and a single mutation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3111-9.	3.3	38
110	De Novo Sequencing of Complex Mixtures of Heparan Sulfate Oligosaccharides. Analytical Chemistry, 2016, 88, 5299-5307.	3.2	31
111	Integrated Approach to Identify Heparan Sulfate Ligand Requirements of Robo1. Journal of the American Chemical Society, 2016, 138, 13059-13067.	6.6	42
112	Chemical Glycobiology. Glycobiology, 2016, 26, 788-788.	1.3	7
113	Structural Aspects of Heparan Sulfate Binding to Robo1–Ig1–2. ACS Chemical Biology, 2016, 11, 3106-3113.	1.6	22
114	One-Step Selective Exoenzymatic Labeling (SEEL) Strategy for the Biotinylation and Identification of Glycoproteins of Living Cells. Journal of the American Chemical Society, 2016, 138, 11575-11582.	6.6	81
115	Overcoming the limited availability of human milk oligosaccharides: challenges and opportunities for research and application. Nutrition Reviews, 2016, 74, 635-644.	2.6	109
116	Divergent Chemoenzymatic Synthesis of Asymmetricalâ€Coreâ€Fucosylated and Coreâ€Unmodified <i>N</i> â€Glycans. Chemistry - A European Journal, 2016, 22, 18742-18746.	1.7	38
117	Controlled Multiâ€functionalization Facilitates Targeted Delivery of Nanoparticles to Cancer Cells. Chemistry - A European Journal, 2016, 22, 1415-1423.	1.7	24
118	Mechanism of Glycosylation of Anomeric Sulfonium Ions. Journal of the American Chemical Society, 2016, 138, 3002-3011.	6.6	45
119	Selective Exo-Enzymatic Labeling Detects Increased Cell Surface Sialoglycoprotein Expression upon Megakaryocytic Differentiation. Journal of Biological Chemistry, 2016, 291, 3982-3989.	1.6	45
120	A metal-free turn-on fluorescent probe for the fast and sensitive detection of inorganic azides. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1651-1654.	1.0	10
121	Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment. Chemical Science, 2016, 7, 2294-2301.	3.7	35
122	<scp>GacA</scp> is essential for <scp>G</scp> roup <scp>A <i>S</i></scp> <i>treptococcus</i> and defines a new class of monomeric d <scp>TDP</scp> â€4â€dehydrorhamnose reductases (<scp>RmlD</scp>). Molecular Microbiology, 2015, 98, 946-962.	1.2	46
123	Synthetic Enterobacterial Common Antigen (ECA) for the Development of a Universal Immunotherapy for Drugâ€Resistant <i>Enterobacteriaceae</i> . Angewandte Chemie - International Edition, 2015, 54, 10953-10957.	7.2	32
124	Assembly of a Complex Branched Oligosaccharide by Combining Fluorousâ€Supported Synthesis and Stereoselective Glycosylations using Anomeric Sulfonium Ions. Chemistry - A European Journal, 2015, 21, 12920-12926.	1.7	26
125	Chemical Synthesis of a Glycopeptide Derived from Skp1 for Probing Protein Specific Glycosylation. Chemistry - A European Journal, 2015, 21, 11779-11787.	1.7	9
126	Fluorogenic Strainâ€Promoted Alkyne–Diazo Cycloadditions. Chemistry - A European Journal, 2015, 21, 13996-14001.	1.7	35

#	Article	IF	Citations
127	Linear synthesis and immunological properties of a fully synthetic vaccine candidate containing a sialylated MUC1 glycopeptide. Chemical Communications, 2015, 51, 10214-10217.	2.2	51
128	Discovery of a Heparan Sulfate 3- <i>O</i> -Sulfation Specific Peeling Reaction. Analytical Chemistry, 2015, 87, 592-600.	3.2	35
129	Synthesis of <i>Staphylococcus aureus</i> Type 5 Trisaccharide Repeating Unit: Solving the Problem of Lactamization. Organic Letters, 2015, 17, 928-931.	2.4	40
130	Branched Polyhedral Oligomeric Silsesquioxane Nanoparticles Prepared via Strain-Promoted 1,3-Dipolar Cycloadditions. Langmuir, 2015, 31, 8146-8155.	1.6	14
131	Assignment of hexuronic acid stereochemistry in synthetic heparan sulfate tetrasaccharides with 2-O-sulfo uronic acids using electron detachment dissociation. International Journal of Mass Spectrometry, 2015, 390, 163-169.	0.7	19
132	Generating Isoform-Specific Antibodies: Lessons from Nucleocytoplasmic Glycoprotein Skp1., 2015,, 927-934.		1
133	A Computational Framework for Heparan Sulfate Sequencing Using High-resolution Tandem Mass Spectra. Molecular and Cellular Proteomics, 2014, 13, 2490-2502.	2.5	25
134	Preparation of Wellâ€Defined Antibody–Drug Conjugates through Glycan Remodeling and Strainâ€Promoted Azide–Alkyne Cycloadditions. Angewandte Chemie - International Edition, 2014, 53, 7179-7182.	7.2	129
135	A multifunctional anomeric linker for the chemoenzymatic synthesis of complex oligosaccharides. Chemical Communications, 2014, 50, 7132-7135.	2.2	34
136	New glucuronic acid donors for the modular synthesis of heparan sulfate oligosaccharides. Organic and Biomolecular Chemistry, 2014, 12, 2087-2098.	1.5	23
137	High-Field Asymmetric-Waveform Ion Mobility Spectrometry and Electron Detachment Dissociation of Isobaric Mixtures of Glycosaminoglycans. Journal of the American Society for Mass Spectrometry, 2014, 25, 258-268.	1.2	64
138	Immune and Anticancer Responses Elicited by Fully Synthetic Aberrantly Glycosylated MUC1 Tripartite Vaccines Modified by a TLR2 or TLR9 Agonist. ChemBioChem, 2014, 15, 1508-1513.	1.3	60
139	Exploring Strainâ€Promoted 1,3â€Dipolar Cycloadditions of End Functionalized Polymers. Chemistry - A European Journal, 2014, 20, 8753-8760.	1.7	10
140	Selective and reversible photochemical derivatization of cysteine residues in peptides and proteins. Chemical Science, 2014, 5, 1591-1598.	3.7	63
141	Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate?. Frontiers in Cellular and Infection Microbiology, 2014, 4, 193.	1.8	71
142	B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of \hat{l}_{\pm} -dystroglycan. ELife, 2014, 3, .	2.8	78
143	Generating Isoform-Specific Antibodies: Lessons from the Nucleocytoplasmic Glycoprotein Skp1. , 2014, , 1-8.		1
144	Chemical synthesis of \hat{l}^2 -arabinofuranosyl containing oligosaccharides derived from plant cell wall extensins. Organic and Biomolecular Chemistry, 2013, 11, 5136.	1.5	14

#	Article	IF	CITATIONS
145	Stage-specific expression and antigenicity of glycoprotein glycans isolated from the human liver fluke, Opisthorchis viverrini. International Journal for Parasitology, 2013, 43, 37-50.	1.3	16
146	Photo-click chemistry strategies for spatiotemporal control of metal-free ligation, labeling, and surface derivatization. Pure and Applied Chemistry, 2013, 85, 1499-1513.	0.9	42
147	Adaptive immune activation: glycosylation does matter. Nature Chemical Biology, 2013, 9, 776-784.	3.9	250
148	A General Strategy for the Chemoenzymatic Synthesis of Asymmetrically Branched $\langle i \rangle N \langle i \rangle$ -Glycans. Science, 2013, 341, 379-383.	6.0	304
149	Multifunctionalization of Polymers by Strain-Promoted Cycloadditions. Macromolecules, 2013, 46, 7759-7768.	2.2	46
150	Microarray analysis of the human antibody response to synthetic Cryptosporidium glycopeptides. International Journal for Parasitology, 2013, 43, 901-907.	1.3	22
151	Fluorous Supported Modular Synthesis of Heparan Sulfate Oligosaccharides. Organic Letters, 2013, 15, 342-345.	2.4	65
152	Abnormal accumulation and recycling of glycoproteins visualized in Niemann-Pick type C cells using the chemical reporter strategy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10207-10212.	3.3	29
153	Dissecting the Molecular Basis of the Role of the Oâ€Mannosylation Pathway in Disease: αâ€Dystroglycan and Forms of Muscular Dystrophy. ChemBioChem, 2013, 14, 2392-2402.	1.3	25
154	Selective Exoâ€Enzymatic Labeling of Nâ€Glycans on the Surface of Living Cells by Recombinant ST6Galâ€l. Angewandte Chemie - International Edition, 2013, 52, 13012-13015.	7.2	83
155	Epitope Mapping of Monoclonal Antibodies using Synthetic Oligosaccharides Uncovers Novel Aspects of Immune Recognition of the Psl Exopolysaccharide of <i>Pseudomonas aeruginosa</i> European Journal, 2013, 19, 17425-17431.	1.7	19
156	Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 261-266.	3.3	278
157	A Fluorogenic Probe for the Catalyst-Free Detection of Azide-Tagged Molecules. Journal of the American Chemical Society, 2012, 134, 18809-18815.	6.6	118
158	Electron detachment dissociation of synthetic heparan sulfate glycosaminoglycan tetrasaccharides varying in degree of sulfation and hexuronic acid stereochemistry. International Journal of Mass Spectrometry, 2012, 330-332, 152-159.	0.7	24
159	Endolysins of <i>Bacillus anthracis</i> Bacteriophages Recognize Unique Carbohydrate Epitopes of Vegetative Cell Wall Polysaccharides with High Affinity and Selectivity. Journal of the American Chemical Society, 2012, 134, 15556-15562.	6.6	47
160	Polar Dibenzocyclooctynes for Selective Labeling of Extracellular Glycoconjugates of Living Cells. Journal of the American Chemical Society, 2012, 134, 5381-5389.	6.6	82
161	Chemical Synthesis and Immunological Evaluation of the Inner Core Oligosaccharide of Francisella tularensis. Journal of the American Chemical Society, 2012, 134, 14255-14262.	6.6	54
162	Stereoselective Assembly of Complex Oligosaccharides Using Anomeric Sulfonium Ions as Glycosyl Donors. Journal of the American Chemical Society, 2012, 134, 7545-7552.	6.6	74

#	Article	IF	CITATIONS
163	Disease-specific non–reducing end carbohydrate biomarkers for mucopolysaccharidoses. Nature Chemical Biology, 2012, 8, 197-204.	3.9	124
164	A synthetic heparan sulfate oligosaccharide library reveals the novel enzymatic action of <scp>d </scp> -glucosaminyl 3-O-sulfotransferase-3a. Molecular BioSystems, 2012, 8, 609-614.	2.9	16
165	A Chemoâ€Mechanical Tweezer for Singleâ€Molecular Characterization of Soft Materials. Chemistry - A European Journal, 2012, 18, 4568-4574.	1.7	3
166	Two-step bioorthogonal activity-based proteasome profiling using copper-free click reagents: A comparative study. Bioorganic and Medicinal Chemistry, 2012, 20, 662-666.	1.4	26
167	Synthetic, Structural, and Biosynthetic Studies of an Unusual Phospho-Glycopeptide Derived from α-Dystroglycan. Journal of the American Chemical Society, 2011, 133, 14418-14430.	6.6	42
168	Multifunctional Surface Modification of Gold-Stabilized Nanoparticles by Bioorthogonal Reactions. Journal of the American Chemical Society, 2011, 133, 11147-11153.	6.6	54
169	Requirements for Skp1 Processing by Cytosolic Prolyl $4(\langle i\rangle trans\langle i\rangle)$ -Hydroxylase and $\hat{l}\pm \langle i\rangle N\langle i\rangle$ -Acetylglucosaminyltransferase Enzymes Involved in $0\langle sub\rangle 2\langle sub\rangle$ Signaling in $\langle i\rangle$ Dictyostelium $\langle i\rangle$. Biochemistry, 2011, 50, 1700-1713.	1.2	20
170	Stereoelectronic Effects Determine Oxacarbenium vs \hat{l}^2 -Sulfonium Ion Mediated Glycosylations. Organic Letters, 2011, 13, 284-287.	2.4	58
171	Combining High-Energy C-Trap Dissociation and Electron Transfer Dissociation for Protein O-GlcNAc Modification Site Assignment. Journal of Proteome Research, 2011, 10, 4088-4104.	1.8	141
172	Negative Electron Transfer Dissociation Fourier Transform Mass Spectrometry of Glycosaminoglycan Carbohydrates. European Journal of Mass Spectrometry, 2011, 17, 167-176.	0.5	39
173	Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nature Medicine, 2011, 17, 676-683.	15.2	138
174	Metal-Free Sequential $[3 + 2]$ -Dipolar Cycloadditions using Cyclooctynes and 1,3-Dipoles of Different Reactivity. Journal of the American Chemical Society, 2011, 133, 949-957.	6.6	187
175	Multivariate Analysis of Electron Detachment Dissociation and Infrared Multiphoton Dissociation Mass Spectra of Heparan Sulfate Tetrasaccharides Differing Only in Hexuronic acid Stereochemistry. Journal of the American Society for Mass Spectrometry, 2011, 22, 582-590.	1.2	33
176	Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including \hat{l}_{\pm} -actinin 4. Clinical Proteomics, 2011, 8, 15.	1.1	33
177	Convergent Assembly and Surface Modification of Multifunctional Dendrimers by Three Consecutive Click Reactions. Chemistry - A European Journal, 2011, 17, 839-846.	1.7	57
178	Strainâ€Promoted Alkyne–Azide Cycloadditions (SPAAC) Reveal New Features of Glycoconjugate Biosynthesis. ChemBioChem, 2011, 12, 1912-1921.	1.3	132
179	Antibody Responses to a Spore Carbohydrate Antigen as a Marker of Nonfatal Inhalation Anthrax in Rhesus Macaques. Vaccine Journal, 2011, 18, 743-748.	3.2	16
180	The Extracytoplasmic Domain of the Mycobacterium tuberculosis Ser/Thr Kinase PknB Binds Specific Muropeptides and Is Required for PknB Localization. PLoS Pathogens, 2011, 7, e1002182.	2.1	130

#	Article	IF	CITATIONS
181	Innate immune responses of primary murine macrophage-lineage cells and RAW 264.7 cells to ligands of Toll-like receptors 2, 3, and 4. Comparative Immunology, Microbiology and Infectious Diseases, 2010, 33, 443-454.	0.7	115
182	Chemical Synthesis and Proinflammatory Responses of Monophosphoryl Lipid A Adjuvant Candidates. European Journal of Organic Chemistry, 2010, 2010, 80-91.	1.2	23
183	Surface Modification of Polymeric Micelles by Strainâ€Promoted Alkyne–Azide Cycloadditions. Chemistry - A European Journal, 2010, 16, 13360-13366.	1.7	22
184	Protein Modification by Strainâ€Promoted Alkyne–Nitrone Cycloaddition. Angewandte Chemie - International Edition, 2010, 49, 3065-3068.	7.2	193
185	Chiral-auxiliary-mediated 1,2-cis-glycosylations for the solid-supported synthesis of a biologically important branched î±-glucan. Nature Chemistry, 2010, 2, 552-557.	6.6	132
186	Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nature Chemical Biology, 2010, 6, 338-343.	3.9	163
187	Liposomes modified by carbohydrate ligands can target B cells for the treatment of B-cell lymphomas. Expert Review of Vaccines, 2010, 9, 1251-1256.	2.0	11
188	Differential Induction of Innate Immune Responses by Synthetic Lipid A Derivatives*. Journal of Biological Chemistry, 2010, 285, 29375-29386.	1.6	48
189	Versatile Set of Orthogonal Protecting Groups for the Preparation of Highly Branched Oligosaccharides. Organic Letters, 2010, 12, 4636-4639.	2.4	43
190	One-Pot Three-Step Synthesis of 1,2,3-Triazoles by Copper-Catalyzed Cycloaddition of Azides with Alkynes formed by a Sonogashira Cross-Coupling and Desilylation. Organic Letters, 2010, 12, 4936-4939.	2.4	81
191	Bioorthogonal chemical reporter methodology for visualization, isolation and analysis of glycoconjugates. Carbohydrate Chemistry, 2010, 36, 152-167.	0.3	17
192	Binding and Cellular Activation Studies Reveal That Toll-like Receptor 2 Can Differentially Recognize Peptidoglycan from Gram-positive and Gram-negative Bacteria. Journal of Biological Chemistry, 2009, 284, 8643-8653.	1.6	82
193	Secondary cell wall polysaccharides of Bacillus anthracis are antigens that contain specific epitopes which cross-react with three pathogenic Bacillus cereus strains that caused severe disease, and other epitopes common to all the Bacillus cereus strains tested. Glycobiology, 2009, 19, 665-673.	1.3	24
194	Clathrin- and Dynamin-Dependent Endocytic Pathway Regulates Muramyl Dipeptide Internalization and NOD2 Activation. Journal of Immunology, 2009, 182, 4321-4327.	0.4	110
195	Role of a Cytoplasmic Dual-function Glycosyltransferase in O2 Regulation of Development in Dictyostelium. Journal of Biological Chemistry, 2009, 284, 28896-28904.	1.6	22
196	The Molecular Basis of Inhibition of Golgi αâ€Mannosidase II by Mannostatin A. ChemBioChem, 2009, 10, 268-277.	1.3	35
197	Increasing the Antigenicity of Synthetic Tumorâ€Associated Carbohydrate Antigens by Targeting Tollâ€Like Receptors. ChemBioChem, 2009, 10, 455-463.	1.3	91
198	A Synthetic Lectin for Oâ€Linked βâ€ <i>N</i> à€Acetylglucosamine. Angewandte Chemie - International Edition, 2009, 48, 1775-1779.	7.2	133

#	Article	IF	Citations
199	Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nature Chemistry, 2009, 1, 611-622.	6.6	585
200	Immunotherapy for cancer: synthetic carbohydrate-based vaccines. Chemical Communications, 2009, , 5335.	2.2	184
201	Rapid Assembly of Oligosaccharides: A Highly Convergent Strategy for the Assembly of a Glycosylated Amino Acid Derived from PSGL-1. Journal of Organic Chemistry, 2009, 74, 6064-6071.	1.7	31
202	Simple, Clickable Protocol for Atomic Force Microscopy Tip Modification and Its Application for Trace Ricin Detection by Recognition Imaging. Langmuir, 2009, 25, 2860-2864.	1.6	36
203	Modular Synthesis of Heparan Sulfate Oligosaccharides for Structureâ°'Activity Relationship Studies. Journal of the American Chemical Society, 2009, 131, 17394-17405.	6.6	246
204	Selective Labeling of Living Cells by a Photo-Triggered Click Reaction. Journal of the American Chemical Society, 2009, 131, 15769-15776.	6.6	341
205	Chemo-enzymatic synthesis of C-9 acetylated sialosides. Carbohydrate Research, 2008, 343, 1605-1611.	1.1	15
206	Synthesis and Immunological Properties of a Tetrasaccharide Portion of the B Side Chain of Rhamnogalacturonan II (RGâ€II). ChemBioChem, 2008, 9, 381-388.	1.3	21
207	Chemical Synthesis and Immunological Properties of Oligosaccharides Derived from the Vegetative Cell Wall of <i>Bacillus anthracis</i> ChemBioChem, 2008, 9, 1716-1720.	1.3	21
208	Innate Immune Responses of Synthetic Lipid A Derivatives of <i>Neisseria meningitidis</i> . Chemistry - A European Journal, 2008, 14, 558-569.	1.7	56
209	Visualizing Metabolically Labeled Glycoconjugates of Living Cells by Copperâ€Free and Fast Huisgen Cycloadditions. Angewandte Chemie - International Edition, 2008, 47, 2253-2255.	7.2	825
210	One-Pot Synthesis of Oligosaccharides by Combining Reductive Openings of Benzylidene Acetals and Glycosylations. Organic Letters, 2008, 10, 3247-3250.	2.4	44
211	Probing the Substrate Specificity of Golgi $\hat{l}\pm$ -Mannosidase II by Use of Synthetic Oligosaccharides and a Catalytic Nucleophile Mutant. Journal of the American Chemical Society, 2008, 130, 8975-8983.	6.6	50
212	Synthetic tetra-acylated derivatives of lipid A from Porphyromonas gingivalis are antagonists of human TLR4. Organic and Biomolecular Chemistry, 2008, 6, 3371.	1.5	42
213	Direct and Stereoselective Synthesis of α-Linked 2-Deoxyglycosides. Organic Letters, 2008, 10, 4367-4370.	2.4	47
214	Pannexin-1-Mediated Intracellular Delivery of Muramyl Dipeptide Induces Caspase-1 Activation via Cryopyrin/NLRP3 Independently of Nod2. Journal of Immunology, 2008, 180, 4050-4057.	0.4	139
215	Structural insights into the bactericidal mechanism of human peptidoglycan recognition proteins. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8761-8766.	3.3	87
216	Modification of the Structure of Peptidoglycan Is a Strategy To Avoid Detection by Nucleotide-Binding Oligomerization Domain Protein 1. Infection and Immunity, 2007, 75, 706-713.	1.0	41

#	Article	IF	CITATIONS
217	Zebrafish Peptidoglycan Recognition Proteins Are Bactericidal Amidases Essential for Defense against Bacterial Infections. Immunity, 2007, 27, 518-529.	6.6	121
218	Agonistic and antagonistic properties of a Rhizobium sin-1 lipid A modified by an ether-linked lipid. Organic and Biomolecular Chemistry, 2007, 5, 2087.	1.5	17
219	Stereoselective Glycosylations of 2-Azido-2-deoxy-glucosides Using Intermediate Sulfonium Ions. Organic Letters, 2007, 9, 1959-1962.	2.4	124
220	Modulation of Innate Immune Responses with Synthetic Lipid A Derivatives. Journal of the American Chemical Society, 2007, 129, 5200-5216.	6.6	67
221	A Highly Convergent Chemical Synthesis of Conformational Epitopes of Rhamnogalacturonan II. Angewandte Chemie - International Edition, 2007, 46, 6148-6151.	7.2	30
222	The influence of the long chain fatty acid on the antagonistic activities of Rhizobium sin-1 lipid A. Bioorganic and Medicinal Chemistry, 2007, 15, 4800-4812.	1.4	11
223	Spin-Labeled Analogs of CMP-NeuAc as NMR Probes of the $\hat{l}\pm -2$,6-Sialyltransferase ST6Gal I. Chemistry and Biology, 2007, 14, 409-418.	6.2	13
224	Robust immune responses elicited by a fully synthetic three-component vaccine. Nature Chemical Biology, 2007, 3, 663-667.	3.9	309
225	Stereoselective Glycosylations Using Chiral Auxiliaries. ACS Symposium Series, 2007, , 73-90.	0.5	1
226	Structural Basis of the Inhibition of Golgi \hat{l} ±-Mannosidase II by Mannostatin A and the Role of the Thiomethyl Moiety in Ligandâ 'Protein Interactions. Journal of the American Chemical Society, 2006, 128, 8310-8319.	6.6	59
227	Synthesis of Glyco(lipo)peptides by Liposome-Mediated Native Chemical Ligation. Organic Letters, 2006, 8, 5785-5788.	2.4	52
228	Trisaccharide mimetics of the aminoglycoside antibiotic neomycin. Organic and Biomolecular Chemistry, 2006, 4, 1328.	1.5	12
229	Practical Approach for the Stereoselective Introduction of \hat{l}^2 -Arabinofuranosides. Journal of the American Chemical Society, 2006, 128, 11948-11957.	6.6	147
230	Trypanosoma bruceiUDP-galactose-4′-epimerase in ternary complex with NAD+and the substrate analogue UDP-4-deoxy-4-fluoro-α-D-galactose. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 829-834.	0.7	16
231	Structural basis for the recognition of complex-type biantennary oligosaccharides by Pterocarpus angolensis lectin. FEBS Journal, 2006, 273, 2407-2420.	2.2	13
232	Crystal structure of human peptidoglycan recognition protein \hat{l}^{\pm} bound to a muramyl pentapeptide from Gram-positive bacteria. Protein Science, 2006, 15, 1199-1206.	3.1	41
233	Synthesis and Antigenic Analysis of the BclA Glycoprotein Oligosaccharide from theBacillus anthracis Exosporium. Chemistry - A European Journal, 2006, 12, 9136-9149.	1.7	78
234	The 2-Aminogluconate Isomer of Rhizobium sin-1 Lipid A Can Antagonize TNF-α Production Induced by Enteric LPS. ChemBioChem, 2006, 7, 140-148.	1.3	10

#	Article	IF	CITATIONS
235	Selective Inhibition of Glycosidases by Feedback Prodrugs. Angewandte Chemie - International Edition, 2006, 45, 5345-5348.	7.2	5
236	Stereoselective Glycosylations Using (R)- or (S)-(Ethoxycarbonyl)benzyl Chiral Auxiliaries at C-2 of Glycopyranosyl Donors. European Journal of Organic Chemistry, 2006, 2006, 5007-5028.	1.2	42
237	Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 684-689.	3.3	96
238	Glycopeptides as versatile tools for glycobiology. Glycobiology, 2006, 16, 113R-136R.	1.3	167
239	The synthesis of diaminopimelic acid containing peptidoglycan fragments using metathesis cross coupling. Tetrahedron Letters, 2005, 46, 1675-1678.	0.7	48
240	Stereoselective Glycosylation Reactions with Chiral Auxiliaries. Angewandte Chemie - International Edition, 2005, 44, 947-949.	7.2	133
241	Towards a Fully Synthetic Carbohydrate-Based Anticancer Vaccine: Synthesis and Immunological Evaluation of a Lipidated Glycopeptide Containing the Tumor-Associated Tn Antigen. Angewandte Chemie - International Edition, 2005, 44, 5985-5988.	7.2	133
242	Potent and Selective Inhibition of Class II α-D-Mannosidase Activity by a Bicyclic Sulfonium Salt. ChemBioChem, 2005, 6, 845-848.	1.3	28
243	Synthesis and Proinflammatory Properties of Muramyl Tripeptides Containing Lysine and Diaminopimelic Acid Moieties. ChemBioChem, 2005, 6, 2088-2097.	1.3	42
244	Synthesis of a Dimeric Lewis Antigen and the Evaluation of the Epitope Specificity of Antibodies Elicited in Mice. Chemistry - A European Journal, 2005, 11, 5457-5467.	1.7	31
245	Crystal structure of a peptidoglycan recognition protein (PGRP) in complex with a muramyl tripeptide from Gram-positive bacteria. Journal of Endotoxin Research, 2005, 11, 41-46.	2.5	10
246	Selective Recognition of Synthetic Lysine and meso-Diaminopimelic Acid-type Peptidoglycan Fragments by Human Peptidoglycan Recognition Proteins lα and S. Journal of Biological Chemistry, 2005, 280, 37005-37012.	1.6	53
247	Synthesis of Proteophosphoglycans of Leishmania major and Leishmania mexicana. Journal of Organic Chemistry, 2005, 70, 1691-1697.	1.7	23
248	Highly Efficient Stereospecific Preparation of Tn and TF Building Blocks Using Thioglycosyl Donors and the Ph 2 SO/Tf 2 O Promotor System*. Journal of Carbohydrate Chemistry, 2005, 24, 503-516.	0.4	38
249	The Chemistry of Sialic Acid., 2005,, 55-102.		10
250	A General Strategy for Stereoselective Glycosylations. Journal of the American Chemical Society, 2005, 127, 12090-12097.	6.6	242
251	Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17168-17173.	3.3	118
252	Dendritic cell-based assays, but not mannosylation of antigen, improves detection of T-cell responses to proinsulin in type 1 diabetes. Immunology, 2004, 111, 422-429.	2.0	6

#	Article	IF	CITATIONS
253	Glycosyltransferase activity can be selectively modulated by chemical modifications of acceptor substrates. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2205-2208.	1.0	8
254	Inhibition of Golgi Mannosidase II with Mannostatin A Analogues: Synthesis, Biological Evaluation, and Structure-Activity Relationship Studies. ChemBioChem, 2004, 5, 1220-1227.	1.3	28
255	Disaccharide Mimetics of the Aminoglycoside Antibiotic Neamine. ChemBioChem, 2004, 5, 1228-1236.	1.3	23
256	The Immunogenicity of the Tumor-Associated Antigen Lewisy May Be Suppressed by a Bifunctional Cross-Linker Required for Coupling to a Carrier Protein. Chemistry - A European Journal, 2004, 10, 3517-3524.	1.7	164
257	Synthesis and Biological Evaluation of a Lipid A Derivative That Contains an Aminogluconate Moiety. Chemistry - A European Journal, 2004, 10, 4798-4807.	1.7	19
258	A convergent strategy for the preparation of N-glycan core di-, tri-, and pentasaccharide thioaldoses for the site-specific glycosylation of peptides and proteins bearing free cysteines. Carbohydrate Research, 2004, 339, 181-193.	1.1	51
259	The design and synthesis of a selective inhibitor of fucosyltransferase VI. Organic and Biomolecular Chemistry, 2004, 2, 1376.	1.5	7
260	Preparation of a Lipid A Derivative That Contains a 27-Hydroxyoctacosanoic Acid Moiety. Organic Letters, 2004, 6, 3333-3336.	2.4	13
261	Site-Specific Glycosylation of an Aglycosylated Human IgG1-Fc Antibody Protein Generates Neoglycoproteins with Enhanced Function. Chemistry and Biology, 2003, 10, 807-814.	6.2	50
262	Synthesis of Oligosaccharides on Soluble High-Molecular-Weight Branched Polymers in Combination with Purification by Nanofiltration. Organic Letters, 2003, 5, 3591-3594.	2.4	33
263	New Set of Orthogonal Protecting Groups for the Modular Synthesis of Heparan Sulfate Fragments. Organic Letters, 2003, 5, 4975-4978.	2.4	65
264	Multivalency and the Mode of Action of Bacterial Sialidases. Journal of the American Chemical Society, 2003, 125, 7154-7155.	6.6	63
265	An Angiogenic Switch in Macrophages Involving Synergy between Toll-Like Receptors 2, 4, 7, and 9 and Adenosine A2A Receptors. American Journal of Pathology, 2003, 163, 711-721.	1.9	250
266	Synthesis and Biological Evaluation of Rhizobium sin-1 Lipid A Derivatives. Journal of the American Chemical Society, 2003, 125, 6103-6112.	6.6	44
267	Chemo-enzymatic synthesis of conformationally constrained oligosaccharides. Organic and Biomolecular Chemistry, 2003, 1, 3891-3899.	1.5	11
268	Glycosyltransferase Activity Can Be Modulated by Small Conformational Changes of Acceptor Substratesâ€. Biochemistry, 2003, 42, 8522-8529.	1.2	13
269	The Origin of the Synergistic Effect of Muramyl Dipeptide with Endotoxin and Peptidoglycan. Journal of Biological Chemistry, 2002, 277, 39179-39186.	1.6	129
270	Trifluoroacetamido Substituted Sialyl Donors for the Preparation of Sialyl Galactosides. Australian Journal of Chemistry, 2002, 55, 131.	0.5	29

#	Article	IF	CITATIONS
271	High-Avidity, Low-Affinity Multivalent Interactions and the Block to Polyspermy inXenopuslaevis. Journal of the American Chemical Society, 2002, 124, 13035-13046.	6.6	62
272	α-(2,6)-Sialyltransferase-Catalyzed Sialylations of Conformationally Constrained Oligosaccharides. Journal of the American Chemical Society, 2002, 124, 5964-5973.	6.6	32
273	Regioselective Glycosylations in Solution and on Soluble and Insoluble Polymeric Supports. European Journal of Organic Chemistry, 2002, 2002, 1473-1477.	1.2	12
274	Selectively Protected Disaccharide Building Blocks for Modular Synthesis of Heparin Fragments. European Journal of Organic Chemistry, 2002, 2002, 2033.	1.2	41
275	Demixing libraries of saccharides using a multi-linker approach in combination with a soluble polymeric support. Tetrahedron Letters, 2002, 43, 4691-4694.	0.7	10
276	A highly convergent approach for the synthesis of disaccharide repeating units of peptidoglycan. Tetrahedron Letters, 2002, 43, 7805-7807.	0.7	18
277	Chemoselective glycosylations of sterically hindered glycosyl acceptors. Tetrahedron Letters, 2002, 43, 9429-9431.	0.7	26
278	Towards a modular approach for heparin synthesis. Journal of the Chemical Society, Perkin Transactions $1,2001,$, $814-822.$	1.3	52
279	Thioglycosides Protected as Trans-2,3-Cyclic Carbonates in Chemoselective Glycosylations. Organic Letters, 2001, 3, 4201-4203.	2.4	68
280	Involvement of Water in Carbohydrateâ^'Protein Binding. Journal of the American Chemical Society, 2001, 123, 12238-12247.	6.6	154
281	Synthesis and Proinflammatory Effects of Peptidoglycan-Derived Neoglycopeptide Polymers. Journal of the American Chemical Society, 2001, 123, 8145-8146.	6.6	20
282	A Stereoselective Approach for the Synthesis of \hat{l}_{\pm} -Sialosides. Journal of Organic Chemistry, 2001, 66, 5490-5497.	1.7	134
283	A Highly Convergent Synthesis of a Complex Oligosaccharide Derived from Group B Type IIIStreptococcus. Journal of Organic Chemistry, 2001, 66, 2547-2554.	1.7	45
284	The 2-(allyloxy) phenyl acetyl ester as a new relay protecting group for oligosaccharide synthesis. Tetrahedron Letters, 2001, 42, 6469-6471.	0.7	28
285	Parallel Combinatorial Synthesis of Glycodendrimers and Their Hydrogelation Properties. European Journal of Organic Chemistry, 2001, 2001, 2535-2545.	1.2	25
286	A Highly Efficient Synthetic Strategy for Polymeric Support Synthesis of Lex, Ley, and H-type 2 Oligosaccharides. Chemistry - A European Journal, 2001, 7, 2382-2389.	1.7	49
287	Identification of a developmental chemoattractant in Myxococcus xanthus through metabolic engineering. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13990-13994.	3.3	46
288	Glycosides as Donors. , 2001, , 551-581.		1

#	Article	IF	Citations
289	Intermolecular aglycon transfer of ethyl thioglycosides can be prevented by judicious choice of protecting groups. Carbohydrate Research, 2000, 329, 709-715.	1.1	44
290	Polymer-supported oligosaccharide synthesis by a loading–release–reloading strategy. Tetrahedron Letters, 2000, 41, 6969-6972.	0.7	42
291	Polystyrylboronic acid as a reusable polymeric support for oligosaccharide synthesis. Tetrahedron Letters, 2000, 41, 6965-6968.	0.7	34
292	A new set of orthogonal-protecting groups for oligosaccharide synthesis on a polymeric support. Tetrahedron: Asymmetry, 2000, 11, 199-205.	1.8	79
293	A Novel and Efficient Synthesis of a Dimeric LexOligosaccharide on Polymeric Support. Journal of the American Chemical Society, 2000, 122, 10222-10223.	6.6	64
294	Vinyl Glycosides in Oligosaccharide Synthesis (Part 6): 3-Buten-2-YL 2-Azido-2-Deoxy Glycosides and 3-Buten-2-YL 2-Phthalimido-2-Deoxy Glycosides as Novel Glycosyl Donors. Journal of Carbohydrate Chemistry, 2000, 19, 939-958.	0.4	15
295	Synthesis and Supramolecular Characterization of a Novel Class of Glycopyranosyl-Containing Amphiphiles. Journal of Organic Chemistry, 2000, 65, 3357-3366.	1.7	17
296	Recent Advances in O-Sialylation. Chemical Reviews, 2000, 100, 4539-4566.	23.0	339
297	Stereoselective 1,2-cis-galactosylation assisted by remote neighboring group participation and solvent effects. Tetrahedron Letters, 1999, 40, 6523-6526.	0.7	175
298	A Novel Direct Glycosylation Approach for the Synthesis of Dimers of N-Acetylneuraminic Acid. Chemistry - A European Journal, 1999, 5, 1278-1283.	1.7	97
299	Synthesis and Conformational Analysis of a Conformationally Constrained Trisaccharide, and Complexation Properties with Concanavalin A. Chemistry - A European Journal, 1999, 5, 2281-2294.	1.7	36
300	A Two-Directional and Highly Convergent Approach for the Synthesis of the Tumor-Associated Antigen Globo-H. Angewandte Chemie - International Edition, 1999, 38, 3495-3497.	7.2	68
301	Chemoselective Glycosylation Strategy for the Convergent Assembly of Phytoalexin-Elicitor Active Oligosaccharides and Their Photoreactive Derivatives. Journal of Organic Chemistry, 1999, 64, 7828-7835.	1.7	38
302	Stereochemical Dependence of the Self-Assembly of the Immunoadjuvants Pam3Cys and Pam3Cys-Ser. Journal of the American Chemical Society, 1999, 121, 7989-7997.	6.6	31
303	A Novel Direct Glycosylation Approach for the Synthesis of Dimers of N-Acetylneuraminic Acid., 1999, 5, 1278.		1
304	Vinyl glycosides in oligosaccharide synthesis (part 5): A latent-active glycosylation strategy for the preparation of branched trisaccharide libraries. Tetrahedron Letters, 1998, 39, 9801-9804.	0.7	29
305	A Two-Directional Approach for the Solid-Phase Synthesis of Trisaccharide Libraries. Angewandte Chemie - International Edition, 1998, 37, 1898-1900.	7.2	80
306	A two directional glycosylation strategy for the convergent assembly of oligosaccharides. Tetrahedron Letters, 1998, 39, 2187-2190.	0.7	37

#	Article	IF	Citations
307	A novel and versatile glycosyl donor for the preparation of glycosides of N-acetylneuraminic acid. Tetrahedron Letters, 1998, 39, 3065-3068.	0.7	119
308	A unique and highly facile method for synthesising disulfide linked neoglycoconjugates: a new approach for remodelling of peptides and proteins. Chemical Communications, 1998, , 847-848.	2.2	61
309	Two-directional, convergent synthesis of a pentasaccharide that is involved in the hyperacute rejection response in xenotransplantation from pig to man. Journal of the Chemical Society Perkin Transactions 1, 1998, , 857-862.	0.9	20
310	Application of the 2,5-Dimethylpyrrole Group as a New and Orthogonal Amine-Protecting Group in Oligosaccharide Synthesis. Journal of Organic Chemistry, 1998, 63, 4570-4571.	1.7	34
311	Solvent and Other Effects on the Stereoselectivity of Thioglycoside Glycosidations. Synlett, 1997, 1997, 818-820.	1.0	161
312	Novel Regioselective Glycosylations for the Convergent and Chemoselective Assembly of Oligosaccharides. Synlett, 1997, 1997, 809-811.	1.0	35
313	Synthetic carbohydrate-based vaccines: synthesis of an L-glycero-D-manno-heptose antigen–T-epitope–lipopeptide conjugate. Chemical Communications, 1997, , 2087.	2.2	27
314	Vinyl glycosides in oligosaccharide synthesis (part 4): glycosidase-catalysed preparation of substituted allyl glycosides. Journal of the Chemical Society Perkin Transactions 1, 1997, , 3357-3360.	0.9	15
315	Chemoselective Glycosylations. 2. Differences in Size of Anomeric Leaving Groups Can Be Exploited in Chemoselective Glycosylations. Journal of Organic Chemistry, 1997, 62, 8145-8154.	1.7	73
316	Preparation of fluorinated galactosyl nucleoside diphosphates to study the mechanism of the enzyme galactopyranose mutase. Journal of the Chemical Society Perkin Transactions 1, 1997, , 2375-2382.	0.9	35
317	A highly convergent synthesis of a hexasaccharide derived from the oligosaccharide of group B type III Streptococcus. Tetrahedron Letters, 1997, 38, 1629-1632.	0.7	27
318	The design and synthesis of a conformationally constrained trisaccharide for probing carbohydrate-protein interactions. Tetrahedron Letters, 1997, 38, 2023-2026.	0.7	30
319	Trityl ethers in oligosaccharide synthesis: A novel strategy for the convergent assembly of oligosaccharides. Tetrahedron Letters, 1997, 38, 3773-3776.	0.7	49
320	Recent developments in chemical oligosaccharide synthesis. Contemporary Organic Synthesis, 1996, 3, 173.	1.5	87
321	Vinyl Glycosides in Oligosaccharide Synthesis. 2. The Use of Allyl and Vinyl Glycosides in Oligosaccharide Synthesis. Journal of Organic Chemistry, 1996, 61, 4262-4271.	1.7	94
322	Lactic acid is the factor in blood cell extracts which enhances the ability of CMP-NANA to sialylate gonococcal lipopolysaccharide and induce serum resistance. Microbial Pathogenesis, 1996, 20, 87-100.	1.3	25
323	A new procedure for the isomerisation of substituted and unsubstituted allyl ethers of carbohydrates. Chemical Communications, 1996, , 141.	2.2	47
324	Synthetic oligosaccharides: recent advances. Drug Discovery Today, 1996, 1, 331-342.	3.2	23

#	Article	IF	Citations
325	Vinylglycoside in der Oligosaccharidsynthese: eine Strategie für die Herstellung von Trisaccharidbibliotheken, basierend auf einer latentaktiven Glycosylierung. Angewandte Chemie, 1996, 108, 3053-3056.	1.6	16
326	Vinyl Glycosides in Oligosaccharide Synthesis: A Strategy for the Preparation of Trisaccharide Libraries Based on Latent-Active Glycosylation. Angewandte Chemie International Edition in English, 1996, 35, 2845-2847.	4.4	72
327	Strategies in Oligosaccharide Synthesis. Tetrahedron, 1996, 52, 1095-1121.	1.0	395
328	Glycosyl Phosphates: A New Latent-Active Anomeric Phosphorylation Strategy. Synlett, 1996, 1996, 310-312.	1.0	17
329	A Critical Evaluation of the Cationic Coupling of 4-Acetoxy-1,3-Dioxanes. Synlett, 1996, 1996, 536-538.	1.0	11
330	Stereoselectivity in Glycosidic Bond Formation: Studies on the Anomerisation of Thioglycosides. Synlett, 1996, 1996, 906-908.	1.0	21
331	Biosynthesis of tetronasin: Part 4, preparation of deuterium labelled C19-C26, C17-C26, C11-C26 and C3-C26 polyketide fragments as putative biosynthetic precursors of the ionophore antibiotic tetronasin (ICI 139603). Tetrahedron, 1995, 51, 5417-5446.	1.0	13
332	Chemoselective glycosylations (part 1): Differences in size of anomeric leaving groups can be exploited in chemoselective glycosylations. Tetrahedron Letters, 1995, 36, 6325-6328.	0.7	49
333	An Improved Procedure for the Preparation of 1,6-Anhydro Sugars. Synlett, 1995, 1995, 755-756.	1.0	15
334	Vinyl glycosides in oligosaccharide synthesis (part 1): A new latent-active glycosylation strategy. Tetrahedron Letters, 1994, 35, 3593-3596.	0.7	110
335	Two new routes to the C19î—,C26 tetrahydrofuran fragment of the acyl tetronic acid ionophore tetronasin (ICI M139603). Tetrahedron Letters, 1994, 35, 319-322.	0.7	20
336	Novel polyene cyclisation routes to the acyl tetronic acid ionophore tetronasin (ICI M139603). Tetrahedron Letters, 1994, 35, 323-326.	0.7	18
337	Dispiroketals in synthesis (part 10): Further reactions of dispoke protected lactate and glycolate enolates. Tetrahedron, 1994, 50, 7157-7176.	1.0	41
338	Dispiroketals in synthesis (Part 5): A new opportunity for oligosaccharide synthesis using differentially activated glycosyl donors and acceptors. Tetrahedron Letters, 1993, 34, 8523-8526.	0.7	113
339	Selective Acylation and Alkylation Reactions of Diols Using Dibutyltin Dimethoxide. Synlett, 1993, 1993, 913-914.	1.0	52
340	Synthesis of a cell wall component of Haemophilus (Actinobacillus) Pleuropneumoniae Serotype 5. Tetrahedron, 1992, 48, 4649-4658.	1.0	22
341	Synthesis of a potential inhibitor of UDP-glucuronosyltransferase. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 583-588.	1.0	10
342	Synthesis of Id-Hepp and KDO containing di- and tetrasaccharide derivatives of Neisseria meningitidis inner-core region via iodonium ion promoted glycosidations. Tetrahedron, 1992, 48, 885-904.	1.0	58

#	Article	IF	CITATIONS
343	Preparation of a well-defined sugar-peptide conjugate: a possible approach to a synthetic vaccine against neisseria meningitidis. Bioorganic and Medicinal Chemistry Letters, 1991, 1, 303-308.	1.0	18
344	Synthesis of Naturally Occurring Ld-Hep <i>P</i> Containing Disaccharides. Journal of Carbohydrate Chemistry, 1991, 10, 995-1007.	0.4	11
345	Minimal oligosaccharide structures required for induction of immune responses against meningococcal immunotype L1, L2, and L3,7,9 lipopolysaccharides determined by using synthetic oligosaccharide-protein conjugates. Infection and Immunity, 1991, 59, 3566-3573.	1.0	45
346	Use of (phenyldimethylsilyl)methoxymethyl and (phenyldimethylsilyl)methyl ethers as protecting groups for sugar hydroxyls. Tetrahedron Letters, 1990, 31, 2197-2200.	0.7	23
347	lodonium Ion Promoted Reactions at the Anomeric C-2 Center of 1-Methylene Sugars. Synlett, 1990, 1990, 205-206.	1.0	27
348	Synthesis of a trisaccharide of the inner core region of Citrobacter PCM 187 lipopolysaccharide that contains l-glycero-α-d-manno-heptopyranosyl units. Carbohydrate Research, 1989, 192, c1-c4.	1.1	17
349	Application of the Dimethyl(phenyl)silyl Group as a Masked Form of the Hydroxy Group in the Synthesis of anL-glycero-?-D-manno-heptopyranoside-Containing Trisaccharide from the Dephosphorylated Inner Core Region ofNeisseria meningitidis. Angewandte Chemie International Edition in English. 1989, 28, 1504-1506.	4.4	32
350	An efficient route to 3-deoxy-d-manno-2-octulosonic acid (KDO) derivatives via a 1,4-cyclic sulfate approach. Tetrahedron Letters, 1989, 30, 5477-5480.	0.7	59
351	A versatile and new highly stereoselective approach to the synthesis of l-glycero-d-manno-heptopyranosides. Tetrahedron Letters, 1989, 30, 229-232.	0.7	61