
Charles Fernando dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/86705/publications.pdf Version: 2024-02-01

CHARLES FERNANDO DOS

#	Article	IF	CITATIONS
1	The widespread trade in stingless beehives may introduce them into novel places and could threaten species. Journal of Applied Ecology, 2022, 59, 965-981.	4.0	10
2	Influence of seasonal weather variables and habitat type on numbers of colonies of the giant honey bee in Nepal. Apidologie, 2022, 53, 1.	2.0	1
3	Beekeeping Livelihood Development in Nepal: Value-Added Opportunities and Professional Support Needs. Journal of Economic Entomology, 2022, 115, 706-714.	1.8	3
4	Scientific note: a stingless bee species attempting to invade a foreign region. Apidologie, 2022, 53, .	2.0	0
5	Higher richness and abundance of flower-visiting insects close to natural vegetation provide contrasting effects on mustard yields. Journal of Insect Conservation, 2021, 25, 1-11.	1.4	2
6	Larvae of stingless bee Scaptotrigona bipunctata exposed to organophosphorus pesticide develop into lighter, smaller and deformed adult workers. Environmental Pollution, 2021, 272, 116414.	7.5	11
7	Mite diversity is determined by the stingless bee host species. Apidologie, 2021, 52, 950-959.	2.0	5
8	The Use of Honeybee Hives May Boost Yields of Some Crops in Nepal. Psyche: Journal of Entomology, 2021, 2021, 1-6.	0.9	3
9	Factors Affecting the Composition and Succession of Beetles in Exposed Pig Carcasses in Southern Brazil. Journal of Medical Entomology, 2020, 58, 104-113.	1.8	2
10	Mustard plants distant from forest fragments receive a lower diversity of flower-visiting insects. Basic and Applied Ecology, 2020, 47, 35-43.	2.7	6
11	Forest fragments and natural vegetation patches within crop fields contribute to higher oilseed rape yields in Brazil. Agricultural Systems, 2020, 180, 102768.	6.1	14
12	Geometric morphometrics of the forewing shape and size discriminate <i>Plebeia</i> species (Hymenoptera: Apidae) nesting in different substrates. Systematic Entomology, 2019, 44, 787-796.	3.9	6
13	Looking beyond the flowers: associations of stingless bees with sap-sucking insects. Die Naturwissenschaften, 2019, 106, 12.	1.6	7
14	Recent advances in reproductive biology of stingless bees. Insectes Sociaux, 2018, 65, 201-212.	1.2	37
15	Queen bee acceptance under threat: Neurotoxic insecticides provoke deep damage in queen-worker relationships. Ecotoxicology and Environmental Safety, 2018, 166, 42-47.	6.0	10
16	The dilemma of agricultural pollination in Brazil: Beekeeping growth and insecticide use. PLoS ONE, 2018, 13, e0200286.	2.5	25
17	Cooperation and antagonism over time: a conflict faced by males of Tetragonisca angustula in nests. Insectes Sociaux, 2018, 65, 465-471.	1.2	4
18	Influence of Wild Bee Diversity on Canola Crop Yields. Sociobiology, 2018, 65, 751.	0.5	18

CHARLES FERNANDO DOS

#	Article	IF	CITATIONS
19	Relatedness and dispersal distance of eusocial bee males on mating swarms. Entomological Science, 2016, 19, 245-254.	0.6	16
20	Queens become workers: pesticides alter caste differentiation in bees. Scientific Reports, 2016, 6, 31605.	3.3	28
21	Eusocial bee male aggregations: spatially and temporally separated but genetically homogenous. Entomologia Experimentalis Et Applicata, 2016, 158, 320-326.	1.4	9
22	In vitro rearing of stingless bee queens and their acceptance rate into colonies. Apidologie, 2016, 47, 539-547.	2.0	11
23	Temperature Rise and Its Influence on the Cessation of Diapause in <i>Plebeia droryana</i> , a Eusocial Bee (Hymenoptera: Apidae). Annals of the Entomological Society of America, 2016, 109, 29-34.	2.5	8
24	An Alien in the Group: Eusocial Male Bees Sharing Nonspecific Reproductive Aggregations. Journal of Insect Science, 2015, 15, 157.	1.5	10
25	Climate Warming May Threaten Reproductive Diapause of a Highly Eusocial Bee. Environmental Entomology, 2015, 44, 1172-1181.	1.4	26
26	Diapause in Stingless Bees (Hymenoptera: Apidae). Sociobiology, 2015, 61, .	0.5	7
27	Monogamy in large bee societies: a stingless paradox. Die Naturwissenschaften, 2014, 101, 261-264.	1.6	23
28	Congregation Sites and Sleeping Roost of Male Stingless Bees (Hymenoptera: Apidae: Meliponini). Sociobiology, 2014, 61, .	0.5	14
29	A scientific note on diploid males in a reproductive event of a eusocial bee. Apidologie, 2013, 44, 519-521.	2.0	9
30	Interactions between carpenter bees and orchid bees (Hymenoptera: Apidae) in flowers of Bertholletia excelsa Bonpl. (Lecythidaceae). Acta Amazonica, 2012, 42, 89-94.	0.7	10
31	Subtle visits despite guards: Theft from nest of stingless bee (Meliponini) by orchid bee (Euglossini). Entomological Research, 2010, 40, 233-235.	1.1	2
32	Selection and use of calling site by Boana leptolineata and Phyllomedusa distincta during the reproductive season. Iheringia - Serie Zoologia, 0, 111, .	0.5	0
33	Diploid males of Scaptotrigona depilis are able to join reproductive aggregations (Apidae, Meliponini). Journal of Hymenoptera Research, 0, 45, 125-130.	0.8	8
34	Diploid males of Scaptotrigona depilis are able to join reproductive aggregations (Apidae, Meliponini). Journal of Hymenoptera Research, 0, 45, 125-130.	0.8	2
35	Occurrence and ecological data on an exotic solitary bee accidentally introduced in Brazil. EntomoBrasilis, 0, 13, e891.	0.2	0