Anna Marzegalli

List of Publications by Citations

Source: https://exaly.com/author-pdf/8669544/anna-marzegalli-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

30 403 9 19 g-index

33 500 6.2 3.16 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
30	Scaling hetero-epitaxy from layers to three-dimensional crystals. <i>Science</i> , 2012 , 335, 1330-4	33.3	125
29	Unexpected dominance of vertical dislocations in high-misfit ge/si(001) films and their elimination by deep substrate patterning. <i>Advanced Materials</i> , 2013 , 25, 4408-12	24	47
28	Perfect crystals grown from imperfect interfaces. <i>Scientific Reports</i> , 2013 , 3, 2276	4.9	28
27	Photodetection in Hybrid Single-Layer Graphene/Fully Coherent Germanium Island Nanostructures Selectively Grown on Silicon Nanotip Patterns. <i>ACS Applied Materials & ACS ACS ACC & AC</i>	9.5	25
26	In-plane selective area InSbAl nanowire quantum networks. <i>Communications Physics</i> , 2020 , 3,	5.4	18
25	Temperature-Dependent Stability of Polytypes and Stacking Faults in SiC: Reconciling Theory and Experiments. <i>Physical Review Applied</i> , 2019 , 12,	4.3	17
24	3D heteroepitaxy of mismatched semiconductors on silicon. <i>Thin Solid Films</i> , 2014 , 557, 42-49	2.2	16
23	Onset of vertical threading dislocations in Si1\(\mathbb{G}\)ex/Si (001) at a critical Ge concentration. <i>APL Materials</i> , 2013 , 1, 052109	5.7	13
22	Extended defects in 3C-SiC: Stacking faults, threading partial dislocations, and inverted domain boundaries. <i>Acta Materialia</i> , 2021 , 213, 116915	8.4	11
21	Exceptional thermal strain reduction by a tilting pillar architecture: Suspended Ge layers on Si (001). <i>Materials and Design</i> , 2017 , 116, 144-151	8.1	9
20	The origin and nature of killer defects in 3C-SiC for power electronic applications by a multiscale atomistic approach. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 8380-8392	7.1	9
19	3C-SiC Epitaxy on Deeply Patterned Si(111) Substrates. <i>Materials Science Forum</i> , 2016 , 858, 151-154	0.4	9
18	Molecular dynamics simulations of extended defects and their evolution in 3CBiC by different potentials. <i>Modelling and Simulation in Materials Science and Engineering</i> , 2020 , 28, 015002	2	8
17	Lattice tilt and strain mapped by X-ray scanning nanodiffraction in compositionally graded SiGe/Si microcrystals. <i>Journal of Applied Crystallography</i> , 2018 , 51, 368-385	3.8	8
16	Strain Engineering in Highly Mismatched SiGe/Si Heterostructures. <i>Materials Science in Semiconductor Processing</i> , 2017 , 70, 117-122	4.3	7
15	Structure and Stability of Partial Dislocation Complexes in 3C-SiC by Molecular Dynamics Simulations. <i>Materials</i> , 2019 , 12,	3.5	6
14	Dynamics of crosshatch patterns in heteroepitaxy. <i>Physical Review B</i> , 2019 , 100,	3.3	6

LIST OF PUBLICATIONS

13	Misfit-Dislocation Distributions in Heteroepitaxy: From Mesoscale Measurements to Individual Defects and Back. <i>Physical Review Applied</i> , 2018 , 10,	4.3	6
12	New Approaches and Understandings in the Growth of Cubic Silicon Carbide. <i>Materials</i> , 2021 , 14,	3.5	6
11	Burgers Vector Analysis of Vertical Dislocations in Ge Crystals by Large-Angle Convergent Beam Electron Diffraction. <i>Microscopy and Microanalysis</i> , 2015 , 21, 637-45	0.5	5
10	Lattice bending in three-dimensional Ge microcrystals studied by X-ray nanodiffraction and modelling. <i>Journal of Applied Crystallography</i> , 2016 , 49, 976-986	3.8	5
9	Solving the critical thermal bowing in 3C-SiC/Si(111) by a tilting Si pillar architecture. <i>Journal of Applied Physics</i> , 2018 , 123, 185703	2.5	5
8	Structure, interface abruptness and strain relaxation in self-assisted grown InAs/GaAs nanowires. <i>Applied Surface Science</i> , 2017 , 395, 29-36	6.7	4
7	Mechanism of stacking fault annihilation in 3C-SiC epitaxially grown on Si(001) by molecular dynamics simulations. <i>CrystEngComm</i> , 2021 , 23, 1566-1571	3.3	3
6	Unexpected Dominance of Vertical Dislocations in High-Misfit Ge/Si(001) Films and Their Elimination by Deep Substrate Patterning (Adv. Mater. 32/2013). <i>Advanced Materials</i> , 2013 , 25, 4407-44	40 7 4	2
5	Strained MOSFETs on ordered SiGe dots. Solid-State Electronics, 2011, 65-66, 81-87	1.7	2
4	Atomic-scale insights on the formation of ordered arrays of edge dislocations in Ge/Si(001) films via molecular dynamics simulations <i>Scientific Reports</i> , 2022 , 12, 3235	4.9	2
3	Strained MOSFETs on ordered SiGe dots 2010 ,		1
2	Nature and Shape of Stacking Faults in 3C-SiC by Molecular Dynamics Simulations. <i>Physica Status Solidi (B): Basic Research</i> , 2021 , 258, 2000598	1.3	O

Stress engineering of boron doped diamond thin films via micro-fabrication. APL Materials, 2021, 9, 061109