Zhigang Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/866894/publications.pdf

Version: 2024-02-01

304743 434195 3,080 33 22 31 h-index citations g-index papers 34 34 34 3053 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Functional Reorganization of Local Circuit Connectivity in Superficial Spinal Dorsal Horn with Neuropathic Pain States. ENeuro, 2019, 6, ENEURO.0272-19.2019.	1.9	10
2	Gabapentin prevents synaptogenesis between sensory and spinal cord neurons induced by thrombospondinâ€4 acting on preâ€synaptic Ca _v α ₂ δ ₁ subunits and involving Tâ€type Ca ²⁺ channels. British Journal of Pharmacology, 2018, 175, 2348-2361.	5.4	28
3	Injuryâ€induced maladaptation and dysregulation of calcium channel α ₂ δsubunit proteins and its contribution to neuropathic pain development. British Journal of Pharmacology, 2018, 175, 2231-2243.	5.4	25
4	The EGF-LIKE domain of thrombospondin-4 is a key determinant in the development of pain states due to increased excitatory synaptogenesis. Journal of Biological Chemistry, 2018, 293, 16453-16463.	3.4	11
5	Increased thrombospondin-4 after nerve injury mediates disruption of intracellular calcium signaling in primary sensory neurons. Neuropharmacology, 2017, 117, 292-304.	4.1	17
6	Epileptiform activity and behavioral arrests in mice overexpressing the calcium channel subunit $\hat{l}\pm2\hat{l}-1$. Neurobiology of Disease, 2017, 102, 70-80.	4.4	31
7	Thrombospondin-4 divergently regulates voltage-gated Ca2+ channel subtypes in sensory neurons after nerve injury. Pain, 2016, 157, 2068-2080.	4.2	30
8	Neuregulin-1/ErbB4 Signaling Regulates Visual Cortical Plasticity. Neuron, 2016, 92, 160-173.	8.1	91
9	Central Mechanisms Mediating Thrombospondin-4-induced Pain States. Journal of Biological Chemistry, 2016, 291, 13335-13348.	3.4	46
10	Synaptic ultrastructure changes in trigeminocervical complex posttrigeminal nerve injury. Journal of Comparative Neurology, 2016, 524, 309-322.	1.6	10
11	Painful nerve injury upregulates thrombospondinâ€4 expression in dorsal root ganglia. Journal of Neuroscience Research, 2015, 93, 443-453.	2.9	31
12	Thrombospondin-4 and excitatory synaptogenesis promote spinal sensitization after painful mechanical joint injury. Experimental Neurology, 2015, 264, 111-120.	4.1	37
13	A Novel Analgesic Isolated from a Traditional Chinese Medicine. Current Biology, 2014, 24, 117-123.	3.9	85
14	Calcium Channel $\hat{l}\pm2\hat{l}$ 1 Proteins Mediate Trigeminal Neuropathic Pain States Associated with Aberrant Excitatory Synaptogenesis. Journal of Biological Chemistry, 2014, 289, 7025-7037.	3.4	50
15	Thrombospondin-4 Contributes to Spinal Sensitization and Neuropathic Pain States. Journal of Neuroscience, 2012, 32, 8977-8987.	3.6	114
16	Advancements in Pain Research. Methods in Molecular Biology, 2012, 851, 1-8.	0.9	2
17	Increased Astrocyte Thrombospondinâ€4 Expression in Dorsal Spinal Cord Correlates with Neuropathic Pain States. FASEB Journal, 2012, 26, 662.5.	0.5	O
18	Application of Pulsed Radiofrequency Currents to Rat Dorsal Root Ganglia Modulates Nerve Injury–Induced Tactile Allodynia. Anesthesia and Analgesia, 2011, 113, 610-616.	2.2	38

#	Article	IF	Citations
19	Calcium channel functions in pain processing. Channels, 2010, 4, 510-517.	2.8	112
20	Targeting Voltage-Gated Calcium Channels for Neuropathic Pain Management. Neurotherapeutics, 2009, 6, 679-692.	4.4	84
21	Gabapentin Receptor $\hat{l}\pm2\hat{l}^2$ -1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis. Cell, 2009, 139, 380-392.	28.9	758
22	Profiling of dynamically changed gene expression in dorsal root ganglia post peripheral nerve injury and a critical role of injury-induced glial fibrillary acetic protein in maintenance of pain behaviors. Pain, 2009, 143, 114-122.	4.2	100
23	Enhanced Pre-Synaptic Glutamate Release in Deep-Dorsal Horn Contributes to Calcium Channel Alpha-2-Delta-1 Protein-Mediated Spinal Sensitization and Behavioral Hypersensitivity. Molecular Pain, 2009, 5, 1744-8069-5-6.	2.1	43
24	Multilevel Genomic Approach in Pain Research: Basic Science and Clinical Implications. Reviews in Analgesia, 2008, 10, 45-58.	0.9	4
25	Calcium channel $\hat{l}\pm2\hat{l}$ 1 subunit mediates spinal hyperexcitability in pain modulation. Pain, 2006, 125, 20-34.	4.2	231
26	Mechanistic Dissection of Pain., 2004, 99, 1-10.		4
27	Spinal Dorsal Horn Calcium Channel α ₂ Î-1 Subunit Upregulation Contributes to Peripheral Nerve Injury-Induced Tactile Allodynia. Journal of Neuroscience, 2004, 24, 8494-8499.	3.6	222
28	Coupling gene chip analyses and rat genetic variances in identifying potential target genes that may contribute to neuropathic allodynia development. Journal of Neurochemistry, 2003, 87, 560-573.	3.9	104
29	Upregulation of Dorsal Root Ganglion \hat{l}_{\pm} sub>2 \hat{l} Calcium Channel Subunit and Its Correlation with Allodynia in Spinal Nerve-Injured Rats. Journal of Neuroscience, 2001, 21, 1868-1875.	3.6	581
30	Rat dorsal root ganglia express distinctive forms of the $\hat{l}\pm2$ calcium channel subunit. NeuroReport, 2000, 11, 3449-3452.	1.2	20
31	The role of nitric oxide in nociception. Current Review of Pain, 2000, 4, 459-466.	0.7	141
32	Acetylcholinesterase and Nicotinic Acetylcholine Receptor Expression Diverge in Muscular Dysgenic Mice Lacking the Lâ€Type Calcium Channel. Journal of Neurochemistry, 1996, 67, 111-118.	3.9	13
33	Expression and ligand specificity of acetylcholinesterase and the nicotinic receptor: a tale of two cholinergic sites. Biochemical Society Transactions, 1994, 22, 740-745.	3.4	7