Jonathan V Sweedler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8668885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing the Throughput of FT Mass Spectrometry Imaging Using Joint Compressed Sensing and Subspace Modeling. Analytical Chemistry, 2022, 94, 5335-5343.	6.5	12
2	Mass Spectrometry Measurements of Neuropeptides: From Identification to Quantitation. Annual Review of Analytical Chemistry, 2022, 15, 83-106.	5.4	4
3	Characterizing RNA Modifications in Single Neurons Using Mass Spectrometry. Journal of Visualized Experiments, 2022, , .	0.3	1
4	Metabolomics-based mass spectrometry methods to analyze the chemical content of 3D organoid models. Analyst, The, 2022, 147, 2918-2929.	3.5	6
5	Rapid Determination of RNA Modifications in Consensus Motifs by Nuclease Protection with Ion-Tagged Oligonucleotide Probes and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Genes, 2022, 13, 1008.	2.4	1
6	Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacological Reviews, 2022, 74, 662-679.	16.0	5
7	Profiling 26,000 Aplysia californica neurons by single cell mass spectrometry reveals neuronal populations with distinct neuropeptide profiles. Journal of Biological Chemistry, 2022, 298, 102254.	3.4	12
8	Profiling of <scp>d</scp> â€alanine production by the microbial isolates of rat gut microbiota. FASEB Journal, 2022, 36, .	0.5	5
9	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
10	Advancing d-amino acid-containing peptide discovery in the metazoan. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140553.	2.3	17
11	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
12	3D Particleâ€Free Printing of Biocompatible Conductive Hydrogel Platforms for Neuron Growth and Electrophysiological Recording. Advanced Functional Materials, 2021, 31, 2010246.	14.9	38
13	Introducing <i>Analytical Chemistry</i> 's Diversity and Inclusion Cover Art Series. Analytical Chemistry, 2021, 93, 1211-1212.	6.5	2
14	Enhanced Understanding of Molecular Interactions and Function Underlying Pain Processes Through Networks of Transcript Isoforms, Genes, and Gene Families. Advances and Applications in Bioinformatics and Chemistry, 2021, Volume 14, 49-69.	2.6	4
15	Biopolymer Patterning-Directed Secretion in Mucoid and Nonmucoid Strains of <i>Pseudomonas aeruginosa</i> Revealed by Multimodal Chemical Imaging. ACS Infectious Diseases, 2021, 7, 598-607.	3.8	4
16	Analysis of Peptide Stereochemistry in Single Cells by Capillary Electrophoresis–Trapped Ion Mobility Spectrometry Mass Spectrometry. Analytical Chemistry, 2021, 93, 6205-6213.	6.5	33
17	macroMS: Image-Guided Analysis of Random Objects by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 1180-1188.	2.8	10
18	The Inaugural Measurement Science Symposium: Do Not Miss It!. Analytical Chemistry, 2021, 93, 7151-7151.	6.5	0

#	Article	IF	CITATIONS
19	Characterization of Neuronal RNA Modifications during Non-associative Learning in <i>Aplysia</i> Reveals Key Roles for tRNAs in Behavioral Sensitization. ACS Central Science, 2021, 7, 1183-1190.	11.3	15
20	Droplet Microfluidics with MALDI-MS Detection: The Effects of Oil Phases in GABA Analysis. ACS Measurement Science Au, 2021, 1, 147-156.	4.4	16
21	Image-guided MALDI mass spectrometry for high-throughput single-organelle characterization. Nature Methods, 2021, 18, 1233-1238.	19.0	51
22	Spatiotemporal biodistribution of α-tocopherol is impacted by the source of 13C-labeled α-tocopherol in mice following a single oral dose. Nutrition Research, 2021, 93, 79-86.	2.9	0
23	Alternative Splicing Mechanisms Underlying Opioid-Induced Hyperalgesia. Genes, 2021, 12, 1570.	2.4	7
24	Effects of maternal immune activation in porcine transcript isoforms of neuropeptide and receptor genes. Journal of Integrative Neuroscience, 2021, 20, 21.	1.7	10
25	Single-Neuron RNA Modification Analysis by Mass Spectrometry: Characterizing RNA Modification Patterns and Dynamics with Single-Cell Resolution. Analytical Chemistry, 2021, 93, 14537-14544.	6.5	12
26	Identification of Lipid Heterogeneity and Diversity in the Developing Human Brain. Jacs Au, 2021, 1, 2261-2270.	7.9	23
27	Physiopathological Relevance of D-Serine in the Mammalian Cochlea. Frontiers in Cellular Neuroscience, 2021, 15, 733004.	3.7	6
28	Droplet-assisted electrospray phase separation using an integrated silicon microfluidic platform. Lab on A Chip, 2021, 22, 40-46.	6.0	9
29	Comparative Analysis of Neuropeptides in Homologous Interneurons and Prohormone Annotation in Nudipleuran Sea Slugs. Frontiers in Physiology, 2021, 12, 809529.	2.8	3
30	Differential Post-Translational Amino Acid Isomerization Found among Neuropeptides inAplysia californica. ACS Chemical Biology, 2020, 15, 272-281.	3.4	19
31	Accelerating Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach. Journal of the American Society for Mass Spectrometry, 2020, 31, 2338-2347.	2.8	9
32	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
33	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	Ο
38	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
40	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
41	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
42	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
43	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
44	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
45	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
46	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
47	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
48	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
49	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
50	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
51	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
52	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
53	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
54	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0

#	Article	IF	CITATIONS
55	The Analytical Chemistry Virtual Issue Featuring Our Advisory Boards. Analytical Chemistry, 2020, 92, 15685-15685.	6.5	0
56	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
57	Removing Formaldehydeâ€Induced Peptidyl Crosslinks Enables Mass Spectrometry Imaging of Peptide Hormone Distributions from Formalinâ€Fixed Paraffinâ€Embedded Tissues. Angewandte Chemie - International Edition, 2020, 59, 22584-22590.	13.8	8
58	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
59	Spatiotemporal Distribution of Pseudomonas aeruginosa Alkyl Quinolones under Metabolic and Competitive Stress. MSphere, 2020, 5, .	2.9	14
60	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
61	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
62	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
63	Biphasic Liquid Microjunction Extraction for Profiling Neuronal RNA Modifications by Liquid Chromatography–Tandem Mass Spectrometry. Analytical Chemistry, 2020, 92, 12647-12655.	6.5	6
64	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
65	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
66	Your Manuscript's Incredible Journey. Analytical Chemistry, 2020, 92, 12099-12100.	6.5	0
67	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
68	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
69	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
70	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
71	Removing Formaldehydeâ€Induced Peptidyl Crosslinks Enables Mass Spectrometry Imaging of Peptide Hormone Distributions from Formalinâ€Fixed Paraffinâ€Embedded Tissues. Angewandte Chemie, 2020, 132, 22773-22779	2.0	0
72	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0

#	Article	IF	CITATIONS
73	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	Ο
74	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
75	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
76	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
77	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
78	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
79	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	Ο
80	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
81	Chemistry, Bioengineering, or the Medical Sciences: Where Do Our Manuscripts Come From?. Analytical Chemistry, 2020, 92, 7371-7372.	6.5	Ο
82	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
83	Single-Cell Classification Using Mass Spectrometry through Interpretable Machine Learning. Analytical Chemistry, 2020, 92, 9338-9347.	6.5	51
84	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
85	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	Ο
86	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
87	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	Ο
88	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
89	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8,	6.7	0
90	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	Ο
92	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
93	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
94	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
95	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
96	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
97	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
98	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
99	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
100	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
101	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
102	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
103	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
104	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
105	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
106	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
107	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
108	A mass spectrometryâ€based highâ€throughput screening method for engineering fatty acid synthases with improved production of mediumâ€chain fatty acids. Biotechnology and Bioengineering, 2020, 117, 2131-2138.	3.3	22

#	Article	IF	CITATIONS
109	Characterization of the prohormone complement in Amphiprion and related fish species integrating genome and transcriptome assemblies. PLoS ONE, 2020, 15, e0228562.	2.5	4
110	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
111	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
112	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
113	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
114	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
115	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
118	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
119	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
120	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
121	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
122	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
123	d-Alanine: Distribution, origin, physiological relevance, and implications in disease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140482.	2.3	27
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
126	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0

#	Article	IF	CITATIONS
127	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
128	Nominate Outstanding Measurement Scientists for the 2020 Analytical Chemistry Young Innovator and the 2021 Advances in Measurement Science Lectureship Awards!. Analytical Chemistry, 2020, 92, 3493-3493.	6.5	0
129	Strange Advice for Authors: Submit Your Manuscript with a Short Title on a Weekday. Analytical Chemistry, 2020, 92, 2351-2352.	6.5	1
130	Quantitative Characterization of the Neuropeptide Level Changes in Dorsal Horn and Dorsal Root Ganglia Regions of the Murine Itch Models. Journal of Proteome Research, 2020, 19, 1248-1257.	3.7	4
131	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
132	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
133	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
134	Quantitative Imprint Mass Spectrometry Imaging of Endogenous Ceramides in Rat Brain Tissue with Kinetic Calibration. Analytical Chemistry, 2020, 92, 6613-6621.	6.5	17
135	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
136	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
137	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
138	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
139	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
140	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
141	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
142	The Addition of Executive Editors: A Change for the Better!. Analytical Chemistry, 2020, 92, 6185-6186.	6.5	0
143	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
144	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0

#	Article	IF	CITATIONS
145	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
146	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
147	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	Ο
148	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
149	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
150	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
151	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
152	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
153	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
154	Enhanced single-cell metabolomics by capillary electrophoresis electrospray ionization-mass spectrometry with field amplified sample injection. Analytica Chimica Acta, 2020, 1118, 36-43.	5.4	33
155	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
156	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
157	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
158	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
159	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
160	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
161	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
162	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0

#	Article	IF	CITATIONS
163	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
164	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
165	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
166	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
167	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
168	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
169	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
170	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
171	An Editor's Reflections on an Unusual Year. Analytical Chemistry, 2020, 92, 15686-15687.	6.5	0
172	Avoiding a Retraction: Some Simple Guidelines on What NOT to Do. Analytical Chemistry, 2019, 91, 9331-9332.	6.5	0
173	A rotifer-derived paralytic compound prevents transmission of schistosomiasis to a mammalian host. PLoS Biology, 2019, 17, e3000485.	5.6	11
174	Welcome <i>JASMS</i> to the ACS Measurement Science Family. Analytical Chemistry, 2019, 91, 13313-13313.	6.5	1
175	What Does Your Future Academic Productivity Depend On?. Analytical Chemistry, 2019, 91, 10915-10915.	6.5	1
176	Multidimensional Top-Down Proteomics of Brain-Region-Specific Mouse Brain Proteoforms Responsive to Cocaine and Estradiol. Journal of Proteome Research, 2019, 18, 3999-4012.	3.7	12
177	Investigating brain <scp>d</scp> â€serine: Advocacy for good practices. Acta Physiologica, 2019, 226, e13257.	3.8	25
178	Lipid Analysis of 30â€ 000 Individual Rodent Cerebellar Cells Using High-Resolution Mass Spectrometry. Analytical Chemistry, 2019, 91, 7871-7878.	6.5	46
179	Seasonal adaptations of the hypothalamo-neurohypophyseal system of the dromedary camel. PLoS ONE, 2019, 14, e0216679.	2.5	10
180	Reproducibility and Replicability. Analytical Chemistry, 2019, 91, 7971-7972.	6.5	5

#	Article	IF	CITATIONS
181	Opioid-Induced Hyperalgesia Is Associated with Dysregulation of Circadian Rhythm and Adaptive Immune Pathways in the Mouse Trigeminal Ganglia and Nucleus Accumbens. Molecular Neurobiology, 2019, 56, 7929-7949.	4.0	34
182	The Periodic Table of Elements at 150. Analytical Chemistry, 2019, 91, 5469-5469.	6.5	0
183	Lipid Heterogeneity between Astrocytes and Neurons Revealed by Singleâ€Cell MALDIâ€MS Combined with Immunocytochemical Classification. Angewandte Chemie, 2019, 131, 5971-5975.	2.0	23
184	Lipid Heterogeneity between Astrocytes and Neurons Revealed by Singleâ€Cell MALDIâ€MS Combined with Immunocytochemical Classification. Angewandte Chemie - International Edition, 2019, 58, 5910-5914.	13.8	79
185	Advancing the Fields of Measurement Science with Partnerships and Awards. Analytical Chemistry, 2019, 91, 4223-4223.	6.5	0
186	The Evolving World of Scientific Publications: From Unethical Behaviors to New Mandates from Funding Agencies. Analytical Chemistry, 2019, 91, 1673-1674.	6.5	2
187	Is the Power List a Representative List?. Analytical Chemistry, 2019, 91, 14783-14783.	6.5	0
188	PACAP and Other Neuropeptide Targets Link Chronic Migraine and Opioid-induced Hyperalgesia in Mouse Models*. Molecular and Cellular Proteomics, 2019, 18, 2447-2458.	3.8	30
189	13C-lutein is differentially distributed in tissues of an adult female rhesus macaque following a single oral administration: a pilot study. Nutrition Research, 2019, 61, 102-108.	2.9	4
190	Exploring the Fundamental Structures of Life: Nonâ€Targeted, Chemical Analysis of Single Cells and Subcellular Structures. Angewandte Chemie - International Edition, 2019, 58, 9348-9364.	13.8	65
191	Erforschung der fundamentalen Strukturen des Lebens: Nicht zielgerichtete chemische Analyse von Einzelzellen und subzellulĤen Strukturen. Angewandte Chemie, 2019, 131, 9448-9465.	2.0	5
192	Spatiotemporal dynamics of molecular messaging in bacterial co-cultures studied by multimodal chemical imaging. , 2019, 10863, .		5
193	Neuropeptidomics of the Mammalian Brain. Neuromethods, 2019, , 161-177.	0.3	0
194	Who Are Your Coauthors? Make Sure To Follow Appropriate Practices. Analytical Chemistry, 2018, 90, 2977-2978.	6.5	2
195	The ACS Measurement Journals, the Analytical Division, and Pittcon 2018: A Busy Four Days. Analytical Chemistry, 2018, 90, 2403-2403.	6.5	0
196	Bioinformatics for Prohormone and Neuropeptide Discovery. Methods in Molecular Biology, 2018, 1719, 71-96.	0.9	6
197	The effects of aging on biosynthetic processes in the rat hypothalamic osmoregulatory neuroendocrine system. Neurobiology of Aging, 2018, 65, 178-191.	3.1	17
198	Top-Down Proteomics Enables Comparative Analysis of Brain Proteoforms Between Mouse Strains. Analytical Chemistry, 2018, 90, 3802-3810.	6.5	27

#	Article	IF	CITATIONS
199	Neuropeptidomics of the Rat Habenular Nuclei. Journal of Proteome Research, 2018, 17, 1463-1473.	3.7	20
200	A Resource for Our Reagents: <i>ACS Reagent Chemicals</i> . Analytical Chemistry, 2018, 90, 5511-5511.	6.5	0
201	Exploring the Sea Urchin Neuropeptide Landscape by Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2018, 29, 923-934.	2.8	10
202	Editorial and Review: 29th ASMS Sanibel Conference on Mass Spectrometry—Peptidomics: Bridging the Gap between Proteomics and Metabolomics by MS. Journal of the American Society for Mass Spectrometry, 2018, 29, 801-806.	2.8	5
203	Quantitative SIMS Imaging of Agar-Based Microbial Communities. Analytical Chemistry, 2018, 90, 5654-5663.	6.5	30
204	Peptide identifications and false discovery rates using different mass spectrometry platforms. Talanta, 2018, 182, 456-463.	5.5	17
205	Expired Epinephrine Maintains Chemical Concentration and Sterility. Prehospital Emergency Care, 2018, 22, 414-418.	1.8	4
206	A Versatile Strategy for Characterization and Imaging of Drip Flow Microbial Biofilms. Analytical Chemistry, 2018, 90, 6725-6734.	6.5	14
207	Spatially dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms. Journal of Biological Chemistry, 2018, 293, 9544-9552.	3.4	33
208	Optically Guided Single Cell Mass Spectrometry of Rat Dorsal Root Ganglia to Profile Lipids, Peptides and Proteins. ChemPhysChem, 2018, 19, 1180-1191.	2.1	37
209	Molecular and Physiological Characterization of a Receptor for <scp>d</scp> -Amino Acid-Containing Neuropeptides. ACS Chemical Biology, 2018, 13, 1343-1352.	3.4	27
210	Newly Identified Aplysia SPTR-Gene Family-Derived Peptides: Localization and Function. ACS Chemical Neuroscience, 2018, 9, 2041-2053.	3.5	13
211	Single Cell Neurometabolomics. ACS Chemical Neuroscience, 2018, 9, 40-50.	3.5	49
212	Integrating mass spectrometry with microphysiological systems for improved neurochemical studies. Microphysiological Systems, 2018, 1, 1-1.	2.0	3
213	Gene Network Dysregulation in the Trigeminal Ganglia and Nucleus Accumbens of a Model of Chronic Migraine-Associated Hyperalgesia. Frontiers in Systems Neuroscience, 2018, 12, 63.	2.5	27
214	Science Research — Looking in the Mirror. Analytical Chemistry, 2018, 90, 12323-12324.	6.5	3
215	Exploring Exercise- and Context-Induced Peptide Changes in Mice by Quantitative Mass Spectrometry. ACS Omega, 2018, 3, 13817-13827.	3.5	6
216	Rapid Screening of Lanthipeptide Analogs via In-Colony Removal of Leader Peptides in <i>Escherichia coli</i> . Journal of the American Chemical Society, 2018, 140, 11884-11888.	13.7	25

#	Article	IF	CITATIONS
217	Multimodal Chemical Analysis of the Brain by High Mass Resolution Mass Spectrometry and Infrared Spectroscopic Imaging. Analytical Chemistry, 2018, 90, 11572-11580.	6.5	53
218	Aplysia allatotropin-related peptide and its newly identified d-amino acid–containing epimer both activate a receptor and a neuronal target. Journal of Biological Chemistry, 2018, 293, 16862-16873.	3.4	25
219	A high spatiotemporal study of somatic exocytosis with scanning electrochemical microscopy and nanoITIES electrodes. Chemical Science, 2018, 9, 4937-4941.	7.4	30
220	Disruption of microglia histone acetylation and protein pathways in mice exhibiting inflammation-associated depression-like symptoms. Psychoneuroendocrinology, 2018, 97, 47-58.	2.7	18
221	Interrogation of spatial metabolome of <i>Cinkgo biloba</i> with highâ€resolution matrixâ€assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging. Plant, Cell and Environment, 2018, 41, 2693-2703.	5.7	65
222	cAMP, Ca ²⁺ , pH _i , and NO Regulate H-like Cation Channels That Underlie Feeding and Locomotion in the Predatory Sea Slug <i>Pleurobranchaea californica</i> . ACS Chemical Neuroscience, 2018, 9, 1986-1993.	3.5	2
223	Where Is the Data?. Analytical Chemistry, 2018, 90, 8721-8721.	6.5	3
224	Animal Model Systems in Neuroscience. ACS Chemical Neuroscience, 2018, 9, 1869-1870.	3.5	5
225	Where Do Our Manuscripts Come From?. Analytical Chemistry, 2018, 90, 10089-10089.	6.5	0
226	Conformational investigation of the structure–activity relationship of GdFFD and its analogues on an achatin-like neuropeptide receptor of <i>Aplysia californica</i> involved in the feeding circuit. Physical Chemistry Chemical Physics, 2018, 20, 22047-22057.	2.8	13
227	Single Synaptic Observation of Cholinergic Neurotransmission on Living Neurons: Concentration and Dynamics. Journal of the American Chemical Society, 2018, 140, 7764-7768.	13.7	67
228	Functional Peptidomics: Stimulus- and Time-of-Day-Specific Peptide Release in the Mammalian Circadian Clock. ACS Chemical Neuroscience, 2018, 9, 2001-2008.	3.5	15
229	Non-targeted Identification of d-Amino Acid-Containing Peptides Through Enzymatic Screening, Chiral Amino Acid Analysis, and LC-MS. Methods in Molecular Biology, 2018, 1719, 107-118.	0.9	4
230	Categorizing Cells on the Basis of their Chemical Profiles: Progress in Single-Cell Mass Spectrometry. Journal of the American Chemical Society, 2017, 139, 3920-3929.	13.7	168
231	Single Cell Profiling Using Ionic Liquid Matrix-Enhanced Secondary Ion Mass Spectrometry for Neuronal Cell Type Differentiation. Analytical Chemistry, 2017, 89, 3078-3086.	6.5	60
232	Science Communication: A Science Not an Art. Analytical Chemistry, 2017, 89, 2645-2645.	6.5	0
233	Quantitative Reflection Imaging for the Morphology and Dynamics of LiveAplysia californicaPedal Ganglion Neurons Cultured on Nanostructured Plasmonic Crystals. Langmuir, 2017, 33, 8640-8650.	3.5	3
234	A unique combination of micronutrients rejuvenates cognitive performance in aged mice. Behavioural Brain Research, 2017, 320, 97-112.	2.2	12

#	Article	IF	CITATIONS
235	MALDI MS Guided Liquid Microjunction Extraction for Capillary Electrophoresis–Electrospray Ionization MS Analysis of Single Pancreatic Islet Cells. Analytical Chemistry, 2017, 89, 7765-7772.	6.5	57
236	Metrics to Evaluate Journals, Scientists, and Science: We Are Not There Yet. Analytical Chemistry, 2017, 89, 5653-5653.	6.5	0
237	microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling. Journal of the American Society for Mass Spectrometry, 2017, 28, 1919-1928.	2.8	53
238	Carrot solution culture bioproduction of uniformly labeled ¹³ C-lutein and <i>inÂvivo</i> dosing in non-human primates. Experimental Biology and Medicine, 2017, 242, 305-315.	2.4	4
239	Making the Editor's Job Easier: Let Us Know about Prior Submissions and Related Manuscripts. Analytical Chemistry, 2017, 89, 4329-4329.	6.5	1
240	Dopamine-modified TiO ₂ monolith-assisted LDI MS imaging for simultaneous localization of small metabolites and lipids in mouse brain tissue with enhanced detection selectivity and sensitivity. Chemical Science, 2017, 8, 3926-3938.	7.4	72
241	Mass Spectrometry Imaging of Complex Microbial Communities. Accounts of Chemical Research, 2017, 50, 96-104.	15.6	120
242	Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9455-E9464.	7.1	129
243	Use the Supporting Information, but Do Not Leave Critical Details out of the Main Manuscript. Analytical Chemistry, 2017, 89, 11159-11159.	6.5	0
244	Improved identification and quantitation of mature endogenous peptides in the rodent hypothalamus using a rapid conductive sample heating system. Analyst, The, 2017, 142, 4476-4485.	3.5	18
245	Chiral Measurement of Aspartate and Glutamate in Single Neurons by Large-Volume Sample Stacking Capillary Electrophoresis. Analytical Chemistry, 2017, 89, 12375-12382.	6.5	45
246	The Analytical Chemistry Award Winners. Analytical Chemistry, 2017, 89, 10119-10119.	6.5	0
247	Discovery of leucokinin-like neuropeptides that modulate a specific parameter of feeding motor programs in the molluscan model, Aplysia. Journal of Biological Chemistry, 2017, 292, 18775-18789.	3.4	20
248	Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks. Advanced Biology, 2017, 1, 1700068.	3.0	18
249	Profiling of Microbial Colonies for High-Throughput Engineering of Multistep Enzymatic Reactions via Optically Guided Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Journal of the American Chemical Society, 2017, 139, 12466-12473.	13.7	57
250	From the Great to the Scam, Carefully Select Your Scientific Conferences. Analytical Chemistry, 2017, 89, 8581-8581.	6.5	1
251	3D-Printed pHEMA Materials for Topographical and Biochemical Modulation of Dorsal Root Ganglion Cell Response. ACS Applied Materials & Interfaces, 2017, 9, 30318-30328.	8.0	32
252	2018: The 90th Volume of Analytical Chemistry and Still Growing. Analytical Chemistry, 2017, 89, 12617-12617.	6.5	0

#	Article	IF	CITATIONS
253	The <i>Analytical Chemistry</i> Virtual Issue Featuring Our Advisory Boards. Analytical Chemistry, 2017, 89, 6921-6921.	6.5	Ο
254	Microscale transport physics during atomic force microscopy mass spectrometry and improved sampling efficiency. , 2017, , .		0
255	Mass Spectrometry of Proteins â~†. , 2017, , .		Ο
256	Identification of prohormones and pituitary neuropeptides in the African cichlid, Astatotilapia burtoni. BMC Genomics, 2016, 17, 660.	2.8	22
257	Aplysia Locomotion: Network and Behavioral Actions of GdFFD, a D-Amino Acid-Containing Neuropeptide. PLoS ONE, 2016, 11, e0147335.	2.5	16
258	Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa. , 2016, 9930, .		12
259	Metal-assisted polyatomic SIMS and laser desorption/ionization for enhanced small molecule imaging of bacterial biofilms. Biointerphases, 2016, 11, 02A325.	1.6	21
260	Safety: Declare the Hidden Risks and Hazards of Your Research. Analytical Chemistry, 2016, 88, 11261-11261.	6.5	0
261	Our Evolving Editorial Team. Analytical Chemistry, 2016, 88, 8347-8347.	6.5	1
262	Please Welcome John Yates, III as Editor of the Journal of Proteome Research. Journal of Proteome Research, 2016, 15, 1115-1115.	3.7	0
263	Mass Spectrometry Imaging and Identification of Peptides Associated with Cephalic Ganglia Regeneration in Schmidtea mediterranea. Journal of Biological Chemistry, 2016, 291, 8109-8120.	3.4	23
264	A Universal Identification Number for Authors? Go Ahead, Try It. Analytical Chemistry, 2016, 88, 4583-4583.	6.5	0
265	Characterization of <i>Bacillus subtilis</i> Colony Biofilms via Mass Spectrometry and Fluorescence Imaging. Journal of Proteome Research, 2016, 15, 1955-1962.	3.7	36
266	On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/lonization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues. Analytical Chemistry, 2016, 88, 5988-5995.	6.5	93
267	Choosing an Important Project: Take Two. Analytical Chemistry, 2016, 88, 9327-9327.	6.5	0
268	A oneâ€step matrix application method for MALDI mass spectrometry imaging of bacterial colony biofilms. Journal of Mass Spectrometry, 2016, 51, 1030-1035.	1.6	38
269	The <i>Analytical Chemistry</i> Advisory Boards. Analytical Chemistry, 2016, 88, 7435-7435.	6.5	0
270	Analytical Chemistry and Our National Science Initiatives. Analytical Chemistry, 2016, 88, 6629-6629.	6.5	0

#	Article	IF	CITATIONS
271	Single Cell Peptide Heterogeneity of Rat Islets of Langerhans. ACS Chemical Biology, 2016, 11, 2588-2595.	3.4	73
272	Single-cell analysis at the threshold. Nature Biotechnology, 2016, 34, 1111-1118.	17.5	64
273	The Midwest Universities Analytical Chemistry Conference: Still the Midwest's Secret Weapon?. Analytical Chemistry, 2016, 88, 10337-10337.	6.5	0
274	A <scp>d</scp> -Amino Acid-Containing Neuropeptide Discovery Funnel. Analytical Chemistry, 2016, 88, 11868-11876.	6.5	69
275	A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide. Scientific Reports, 2016, 6, 26940.	3.3	15
276	Analytical capabilities of mass spectrometry imaging and its potential applications in food science. Trends in Food Science and Technology, 2016, 47, 50-63.	15.1	43
277	Choosing an Important Project: The First Stage to Getting Research Published. Analytical Chemistry, 2016, 88, 3421-3421.	6.5	Ο
278	Effects of exercise and dietary epigallocatechin gallate and β-alanine on skeletal muscle in aged mice. Applied Physiology, Nutrition and Metabolism, 2016, 41, 181-190.	1.9	17
279	Career Advice for Graduate Students and Postdoctoral Fellows. Analytical Chemistry, 2016, 88, 2513-2514.	6.5	7
280	Free d-Aspartate in Nonmammalian Animals: Detection, Localization, Metabolism, and Function. , 2016, , 173-197.		0
281	CHARACTERIZING NEUROPEPTIDE RELEASE: FROM ISOLATED CELLS TO INTACT ANIMALS. , 2015, , 335-349.		1
282	Differential peptidomics assessment of strain and age differences in mice in response to acute cocaine administration. Journal of Neurochemistry, 2015, 135, 1038-1048.	3.9	15
283	Lutein and Brain Function. Foods, 2015, 4, 547-564.	4.3	81
284	Integration of untargeted metabolomics with transcriptomics reveals active metabolic pathways. Metabolomics, 2015, 11, 503-517.	3.0	12
285	Striving for Reproducible Science. Analytical Chemistry, 2015, 87, 11603-11604.	6.5	10
286	Microbeam-coupled capillary electrophoresis. Radiation Protection Dosimetry, 2015, 166, 188-191.	0.8	1
287	Help Your Institution's Reputation and Publish in Analytical Chemistry. Analytical Chemistry, 2015, 87, 1421-1421.	6.5	1
288	Mass spectrometry-based characterization of endogenous peptides and metabolites in small volume samples. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 732-740.	2.3	20

#	Article	IF	CITATIONS
289	Classification of Large Cellular Populations and Discovery of Rare Cells Using Single Cell Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2015, 87, 7036-7042.	6.5	78
290	Our Editorial Team. Analytical Chemistry, 2015, 87, 5457-5457.	6.5	2
291	Analytical Chemistry Is Thriving in Thailand. Analytical Chemistry, 2015, 87, 4587-4587.	6.5	1
292	Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends in Pharmacological Sciences, 2015, 36, 579-586.	8.7	70
293	The Scope of Analytical Chemistry. Analytical Chemistry, 2015, 87, 6425-6425.	6.5	4
294	Mass Spectrometry Imaging and GC-MS Profiling of the Mammalian Peripheral Sensory-Motor Circuit. Journal of the American Society for Mass Spectrometry, 2015, 26, 958-966.	2.8	10
295	Rapid Mitogenic Regulation of the mTORC1 Inhibitor, DEPTOR, by Phosphatidic Acid. Molecular Cell, 2015, 58, 549-556.	9.7	84
296	Nanopipet-Based Liquid–Liquid Interface Probes for the Electrochemical Detection of Acetylcholine, Tryptamine, and Serotonin via Ionic Transfer. Analytical Chemistry, 2015, 87, 5095-5100.	6.5	73
297	Exciting Opportunities to Publish Your Analytical Research: <i>Analytical Chemistry</i> , <i>ACS Sensors</i> , and the <i>Journal of Proteome Research</i> . Analytical Chemistry, 2015, 87, 9507-9507.	6.5	1
298	Peptidomics and Secretomics of the Mammalian Peripheral Sensory-Motor System. Journal of the American Society for Mass Spectrometry, 2015, 26, 2051-2061.	2.8	14
299	The Analytical Chemistry Virtual Issue Featuring our Advisory Boards. Analytical Chemistry, 2015, 87, 9109-9109.	6.5	0
300	Are We There Yet? Biases in Hiring Women Faculty Candidates. Analytical Chemistry, 2015, 87, 6989-6989.	6.5	3
301	Multimodal chemical imaging of molecular messengers in emerging Pseudomonas aeruginosa bacterial communities. Analyst, The, 2015, 140, 6544-6552.	3.5	58
302	Identification of best indicators of peptide-spectrum match using a permutation resampling approach. Journal of Bioinformatics and Computational Biology, 2014, 12, 1440001.	0.8	3
303	Analysis of endogenous nucleotides by single cell capillary electrophoresis-mass spectrometry. Analyst, The, 2014, 139, 5835-5842.	3.5	73
304	Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine. MBio, 2014, 5, e00933-13.	4.1	19
305	Too Busy to Review?. Analytical Chemistry, 2014, 86, 5189-5189.	6.5	0
306	The ctenophore genome and the evolutionary origins of neural systems. Nature, 2014, 510, 109-114.	27.8	606

#	Article	IF	CITATIONS
307	Publish Only Your Original Research. Analytical Chemistry, 2014, 86, 3239-3239.	6.5	1
308	Correlated Imaging with C ₆₀ -SIMS and Confocal Raman Microscopy: Visualization of Cell-Scale Molecular Distributions in Bacterial Biofilms. Analytical Chemistry, 2014, 86, 10885-10891.	6.5	58
309	Biomolecular Imaging with a C60-SIMS/MALDI Dual Ion Source Hybrid Mass Spectrometer: Instrumentation, Matrix Enhancement, and Single Cell Analysis. Journal of the American Society for Mass Spectrometry, 2014, 25, 1897-1907.	2.8	61
310	Writing a Review. Analytical Chemistry, 2014, 86, 10503-10503.	6.5	0
311	Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted laser desorption ionization mass spectrometry and confocal Raman microscopy. Analyst, The, 2014, 139, 5700-5708.	3.5	42
312	The Past, Present, and Future of Analytical Chemistry According to Chris Enke. Analytical Chemistry, 2014, 86, 9357-9357.	6.5	1
313	2014 ACS National Chemical Historic Landmark Recognizing Kolthoff's Influence on the Field of Analytical Chemistry. Analytical Chemistry, 2014, 86, 2269-2269.	6.5	1
314	Around the World with <i>Analytical Chemistry</i> . Analytical Chemistry, 2014, 86, 4067-4067.	6.5	2
315	So You Want to Be a Principal Investigator?. Analytical Chemistry, 2014, 86, 7159-7159.	6.5	1
316	Patch Clamp Electrophysiology and Capillary Electrophoresis–Mass Spectrometry Metabolomics for Single Cell Characterization. Analytical Chemistry, 2014, 86, 3203-3208.	6.5	123
317	The <i>Analytical Chemistry</i> Advisory Boards. Analytical Chemistry, 2014, 86, 6171-6171.	6.5	1
318	Comparing Label-Free Quantitative Peptidomics Approaches to Characterize Diurnal Variation of Peptides in the Rat Suprachiasmatic Nucleus. Analytical Chemistry, 2014, 86, 443-452.	6.5	42
319	Fibrinogen α â€chainâ€derived peptide is upregulated in hippocampus of rats exposed to acute morphine injection and spontaneous alternation testing. Pharmacology Research and Perspectives, 2014, 2, e00037.	2.4	1
320	Application of capillary electrophoresis for the early diagnosis of cancer. Analytical and Bioanalytical Chemistry, 2014, 406, 4013-4031.	3.7	31
321	MALDI-guided SIMS: Multiscale Imaging of Metabolites in Bacterial Biofilms. Analytical Chemistry, 2014, 86, 9139-9145.	6.5	79
322	Small-Volume Analysis of Cell–Cell Signaling Molecules in the Brain. Neuropsychopharmacology, 2014, 39, 50-64.	5.4	30
323	Chemistry and the BRAIN Initiative. Journal of the American Chemical Society, 2014, 136, 1-2.	13.7	364
324	d-Alanine in the islets of Langerhans of rat pancreas. Biochemical and Biophysical Research Communications, 2014, 447, 328-333.	2.1	27

#	Article	IF	CITATIONS
325	Accurate Assignment of Significance to Neuropeptide Identifications Using Monte Carlo K-Permuted Decoy Databases. PLoS ONE, 2014, 9, e111112.	2.5	2
326	Considerations in Sample Preparation, Collection, and Extraction Approaches Applied in Microbial, Plant, and Mammalian Metabolic Profiling. , 2013, , 79-118.		5
327	Mass Spectrometry–Based Methodologies for Single-Cell Metabolite Detection and Identification. , 2013, , 119-139.		2
328	Automated method for analysis of tryptophan and tyrosine metabolites using capillary electrophoresis with native fluorescence detection. Analytical and Bioanalytical Chemistry, 2013, 405, 2451-2459.	3.7	24
329	Reflections From My First Year. Analytical Chemistry, 2013, 85, 1-1.	6.5	26
330	Tips on Writing a Postdoctoral Request Letter. Analytical Chemistry, 2013, 85, 6981-6981.	6.5	1
331	Meet <i>Our Second Advisory Board, the Analytical Chemistry Features Panel</i> . Analytical Chemistry, 2013, 85, 7621-7621.	6.5	1
332	Are We Virtual Yet?. Analytical Chemistry, 2013, 85, 3463-3463.	6.5	0
333	Buyer Beware! Think Twice When Selecting a Journal (Or Attending a Conference). Analytical Chemistry, 2013, 85, 9983-9983.	6.5	1
334	Celebrating the 75th Anniversary of the ACS Division of Analytical Chemistry: A Special Collection of the Most Highly Cited Analytical Chemistry Papers Published between 1938 and 2012. Analytical Chemistry, 2013, 85, 4201-4202.	6.5	8
335	Discovery of new enzymes and metabolic pathways by using structure and genome context. Nature, 2013, 502, 698-702.	27.8	124
336	Stimulation and release from neurons via a dual capillary collection device interfaced to mass spectrometry. Analyst, The, 2013, 138, 6337.	3.5	12
337	Storage and Uptake of d-Serine into Astrocytic Synaptic-Like Vesicles Specify Gliotransmission. Journal of Neuroscience, 2013, 33, 3413-3423.	3.6	148
338	Microfluidic systems for studying neurotransmitters and neurotransmission. Lab on A Chip, 2013, 13, 1666.	6.0	49
339	Correlated imaging – a grand challenge in chemical analysis. Analyst, The, 2013, 138, 1924.	3.5	56
340	Quantitative Reflection Imaging of Fixed Aplysia californica Pedal Ganglion Neurons on Nanostructured Plasmonic Crystals. Journal of Physical Chemistry B, 2013, 117, 13069-13081.	2.6	10
341	Progress toward single cell metabolomics. Current Opinion in Biotechnology, 2013, 24, 95-104.	6.6	124
342	Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry. Nature Protocols, 2013, 8, 783-799.	12.0	116

#	Article	IF	CITATIONS
343	Quantitation of endogenous peptides using mass spectrometry based methods. Current Opinion in Chemical Biology, 2013, 17, 801-808.	6.1	32
344	Details Matter, and so Do Statistics. Analytical Chemistry, 2013, 85, 5287-5287.	6.5	0
345	Meet the Analytical Chemistry Editorial Advisory Board. Analytical Chemistry, 2013, 85, 1257-1257.	6.5	0
346	Pittcon: Still Vibrant after More than 60 Years. Analytical Chemistry, 2013, 85, 2557-2557.	6.5	1
347	Quantitative Peptidomics for Discovery of Circadian-Related Peptides from the Rat Suprachiasmatic Nucleus. Journal of Proteome Research, 2013, 12, 585-593.	3.7	51
348	Combining Small-Volume Metabolomic and Transcriptomic Approaches for Assessing Brain Chemistry. Analytical Chemistry, 2013, 85, 3136-3143.	6.5	24
349	Visualizing the proteome: mapping protein changes in disease states with mass spectrometry imaging. Journal of Neurochemistry, 2013, 124, 581-583.	3.9	3
350	Laminar stream of detergents for subcellular neurite damage in a microfluidic device: a simple tool for the study of neuroregeneration. Journal of Neural Engineering, 2013, 10, 036020.	3.5	15
351	Characterization of GdFFD, a d-Amino Acid-containing Neuropeptide That Functions as an Extrinsic Modulator of the Aplysia Feeding Circuit. Journal of Biological Chemistry, 2013, 288, 32837-32851.	3.4	41
352	New Mass Spectrometric Approaches for Uncovering Neuropeptides. , 2013, , 1749-1756.		0
353	Signals from the Brainstem Sleep/Wake Centers Regulate Behavioral Timing via the Circadian Clock. PLoS ONE, 2013, 8, e70481.	2.5	16
354	Multifactorial Understanding of Ion Abundance in Tandem Mass Spectrometry Experiments. Journal of Proteomics and Bioinformatics, 2013, 06, 23-29.	0.4	1
355	Analysis of endogenous D-amino acid-containing peptides in Metazoa. , 2013, , 1-18.		0
356	Comparative peptidomics analysis of neural adaptations in rats repeatedly exposed to amphetamine. Journal of Neurochemistry, 2012, 123, 276-287.	3.9	26
357	Targeted Single-Cell Microchemical Analysis: MS-Based Peptidomics of Individual Paraformaldehyde-Fixed and Immunolabeled Neurons. Chemistry and Biology, 2012, 19, 1010-1019.	6.0	41
358	Secondary Ion Mass Spectrometry Imaging of Molecular Distributions in Cultured Neurons and Their Processes: Comparative Analysis of Sample Preparation. Journal of the American Society for Mass Spectrometry, 2012, 23, 1931-1938.	2.8	34
359	Relative Quantitation of Neuropeptides over a Thousand-fold Concentration Range. Journal of the American Society for Mass Spectrometry, 2012, 23, 2083-2093.	2.8	14
360	Label-free quantitation of peptide release from neurons in a microfluidic device with mass spectrometry imaging. Lab on A Chip, 2012, 12, 2037.	6.0	55

#	Article	IF	CITATIONS
361	Filling Royce's Shoes. Analytical Chemistry, 2012, 84, 1-1.	6.5	17
362	Sampling techniques for single-cell electrophoresis. Analyst, The, 2012, 137, 2922.	3.5	28
363	Professional Editors or Scientist Editors? Both perspectives have value Analytical Chemistry, 2012, 84, 2095-2095.	6.5	3
364	Analytical Chemistry: The Synergies between the Division and the Journal. Analytical Chemistry, 2012, 84, 8899-8899.	6.5	0
365	Reviews, Perspectives, Features: What's the Difference?. Analytical Chemistry, 2012, 84, 1195-1195.	6.5	2
366	Evaluation of Database Search Programs for Accurate Detection of Neuropeptides in Tandem Mass Spectrometry Experiments. Journal of Proteome Research, 2012, 11, 6044-6055.	3.7	17
367	Now it is a Highlight, Not an Acceleration. Analytical Chemistry, 2012, 84, 7273-7273.	6.5	1
368	1-Methylthio- <scp>d</scp> -xylulose 5-Phosphate Methylsulfurylase: A Novel Route to 1-Deoxy- <scp>d</scp> -xylulose 5-Phosphate in <i>Rhodospirillum rubrum</i> . Biochemistry, 2012, 51, 8324-8326.	2.5	17
369	Rejections with Editorial Expertise and Without External Review: Are These Fair?. Analytical Chemistry, 2012, 84, 10149-10149.	6.5	1
370	Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491, 393-398.	27.8	1,190
371	Collaborators, Colleagues, and Friends Need Not Be Listed Analytical Chemistry, 2012, 84, 3857-3857.	6.5	2
372	Single-Cell Metabolomics: Changes in the Metabolome of Freshly Isolated and Cultured Neurons. ACS Chemical Neuroscience, 2012, 3, 782-792.	3.5	67
373	Don't Grow Your Article Too Long: We Do Have Length Guidelines. Analytical Chemistry, 2012, 84, 5449-5449.	6.5	1
374	Let's Get Social. Analytical Chemistry, 2012, 84, 3039-3039.	6.5	2
375	A protease for 'middle-down' proteomics. Nature Methods, 2012, 9, 822-824.	19.0	103
376	Microfluidic Device for the Selective Chemical Stimulation of Neurons and Characterization of Peptide Release with Mass Spectrometry. Analytical Chemistry, 2012, 84, 9446-9452.	6.5	35
377	Mass spectrometry imaging and profiling of single cells. Journal of Proteomics, 2012, 75, 5036-5051.	2.4	168
378	First survey and functional annotation of prohormone and convertase genes in the pig. BMC Genomics, 2012, 13, 582.	2.8	7

#	Article	IF	CITATIONS
379	Therapeutic peptide production in Drosophila. Peptides, 2012, 36, 251-256.	2.4	4
380	Two Unrelated Items to Avoid, One for Me and One for You. Analytical Chemistry, 2012, 84, 4635-4636.	6.5	2
381	Metabolomics in Analytical Chemistry. Analytical Chemistry, 2012, 84, 5833-5833.	6.5	2
382	d-Aspartate acts as a signaling molecule in nervous and neuroendocrine systems. Amino Acids, 2012, 43, 1873-1886.	2.7	105
383	A hyphenated optical trap capillary electrophoresis laser induced native fluorescence system for single-cell chemical analysis. Analyst, The, 2012, 137, 2965.	3.5	18
384	A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nature Chemical Biology, 2012, 8, 926-932.	8.0	73
385	Are We Growing More Picky, More Careless or Simply under More Pressure?. Analytical Chemistry, 2012, 84, 6277-6277.	6.5	0
386	An enhanced protein crosslink identification strategy using CIDâ€cleavable chemical crosslinkers and LC/MS <i>ⁿ</i> analysis. Proteomics, 2012, 12, 401-405.	2.2	22
387	Glial D-Serine Gates NMDA Receptors at Excitatory Synapses in Prefrontal Cortex. Cerebral Cortex, 2012, 22, 595-606.	2.9	154
388	Peptidomic Analyses of Mouse Astrocytic Cell Lines and Rat Primary Cultured Astrocytes. Journal of Proteome Research, 2012, 11, 3965-3973.	3.7	32
389	Circadian Rhythm of Redox State Regulates Excitability in Suprachiasmatic Nucleus Neurons. Science, 2012, 337, 839-842.	12.6	188
390	Mechanical Tension Modulates Local and Global Vesicle Dynamics in Neurons. Cellular and Molecular Bioengineering, 2012, 5, 155-164.	2.1	47
391	The Hypothalamicâ€Neurohypophyseal System: From Genome to Physiology. Journal of Neuroendocrinology, 2012, 24, 539-553.	2.6	41
392	Serotonin of mast cell origin contributes to hippocampal function. European Journal of Neuroscience, 2012, 36, 2347-2359.	2.6	68
393	Urotensin II in Invertebrates: From Structure to Function in Aplysia californica. PLoS ONE, 2012, 7, e48764.	2.5	36
394	The modified-bead stretched sample method: Development and application to MALDI-MS imaging of protein localization in the spinal cord. Chemical Science, 2011, 2, 785.	7.4	27
395	Distinguishing Endogenous <scp>d</scp> -Amino Acid-Containing Neuropeptides in Individual Neurons Using Tandem Mass Spectrometry. Analytical Chemistry, 2011, 83, 2794-2800.	6.5	64
396	The Enzyme Function Initiative. Biochemistry, 2011, 50, 9950-9962.	2.5	169

#	Article	IF	CITATIONS
397	Stretched Tissue Mounting for MALDI Mass Spectrometry Imaging. Analytical Chemistry, 2011, 83, 9181-9185.	6.5	15
398	Diversity of conotoxin types from Conus californicus reflects a diversity of prey types and a novel evolutionary history. Toxicon, 2011, 57, 311-322.	1.6	48
399	Collection of Peptides Released from Single Neurons with Particle-Embedded Monolithic Capillaries Followed by Detection with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2011, 83, 9557-9563.	6.5	17
400	The Notch effector gene Hes1 regulates migration of hypothalamic neurons, neuropeptide content and axon targeting to the pituitary. Developmental Biology, 2011, 353, 61-71.	2.0	32
401	Probing the Production of Amidated Peptides following Genetic and Dietary Copper Manipulations. PLoS ONE, 2011, 6, e28679.	2.5	24
402	Small molecule analysis and imaging of fatty acids in the zebra finch song system using timeâ€ofâ€flightâ€secondary ion mass spectrometry. Journal of Neurochemistry, 2011, 118, 499-511.	3.9	24
403	Mice deficient in endothelin onverting enzymeâ€2 exhibit abnormal responses to morphine and altered peptide levels in the spinal cord. Journal of Neurochemistry, 2011, 119, 1074-1085.	3.9	12
404	Profiling metabolites and peptides in single cells. Nature Methods, 2011, 8, S20-S29.	19.0	311
405	Direct cellular peptidomics of hypothalamic neurons. Frontiers in Neuroendocrinology, 2011, 32, 377-386.	5.2	17
406	Molecular Organization of Drosophila Neuroendocrine Cells by Dimmed. Current Biology, 2011, 21, 1515-1524.	3.9	33
407	Metabolic Differentiation of Neuronal Phenotypes by Single-cell Capillary Electrophoresis–Electrospray Ionization-Mass Spectrometry. Analytical Chemistry, 2011, 83, 6810-6817.	6.5	128
408	MALDI Mass Spectrometry Imaging of Neuronal Cell Cultures. Journal of the American Society for Mass Spectrometry, 2011, 22, 828-36.	2.8	47
409	Integration of sequence and functional information to identify and annotate neuropeptides in the pig genome. , 2011, , .		Ο
410	Model of ion intensity from tandem mass spectra for improved peptide identification and simulation. , 2011, , .		1
411	A Novel Pyridoxal 5′-Phosphate-dependent Amino Acid Racemase in the Aplysia californica Central Nervous System. Journal of Biological Chemistry, 2011, 286, 13765-13774.	3.4	32
412	A diverse family of novel peptide toxins from an unusual cone snail, <i>Conus californicus</i> . Journal of Experimental Biology, 2011, 214, 147-161.	1.7	25
413	Comparison of tandem mass spectrometry search methods to identify neuropeptides. , 2011, , .		0
414	Neuropeptidomics of the Mammalian Brain. Neuromethods, 2011, , 229-242.	0.3	3

#	Article	IF	CITATIONS
415	Neuropeptidomics: Mass Spectrometry-Based Qualitative and Quantitative Analysis. Methods in Molecular Biology, 2011, 789, 223-236.	0.9	23
416	Chronic Morphine Alters the Presynaptic Protein Profile: Identification of Novel Molecular Targets Using Proteomics and Network Analysis. PLoS ONE, 2011, 6, e25535.	2.5	51
417	Mass Spectrometry Screening Reveals Peptides Modulated Differentially in the Medial Prefrontal Cortex of Rats with Disparate Initial Sensitivity to Cocaine. AAPS Journal, 2010, 12, 443-454.	4.4	23
418	Fishing for the Hidden Peptidome in Health and Disease (Drug Abuse). AAPS Journal, 2010, 12, 679-682.	4.4	7
419	Feedforward Compensation Mediated by the Central and Peripheral Actions of a Single Neuropeptide Discovered Using Representational Difference Analysis. Journal of Neuroscience, 2010, 30, 16545-16558.	3.6	46
420	Genome-wide census and expression profiling of chicken neuropeptide and prohormone convertase genes. Neuropeptides, 2010, 44, 31-44.	2.2	18
421	Transcriptional Orchestration of the Regulated Secretory Pathway in Neurons by the bHLH protein DIMM. Current Biology, 2010, 20, 9-18.	3.9	58
422	Base-induced delignification of miscanthus x giganteus studied by three-dimensional confocal raman imaging. Bioresource Technology, 2010, 101, 4919-4925.	9.6	61
423	Comparison of sample pre-treatments for laser desorption ionization and secondary ion mass spectrometry imaging of Miscanthus×giganteus. Bioresource Technology, 2010, 101, 5578-5585.	9.6	21
424	The zebra finch neuropeptidome: prediction, detection and expression. BMC Biology, 2010, 8, 28.	3.8	44
425	Synthesis, accumulation, and release of <scp>d</scp> â€aspartate in the <i>Aplysia californica</i> CNS. Journal of Neurochemistry, 2010, 115, 1234-1244.	3.9	20
426	The genome of a songbird. Nature, 2010, 464, 757-762.	27.8	770
427	Circadian Integration of Clutamatergic Signals by Little SAAS in Novel Suprachiasmatic Circuits. PLoS ONE, 2010, 5, e12612.	2.5	34
428	Composite Modulatory Feedforward Loop Contributes to the Establishment of a Network State. Journal of Neurophysiology, 2010, 103, 2174-2184.	1.8	37
429	Serotonin and its metabolism in basal deuterostomes: insights from <i>Strongylocentrotus purpuratus</i> and <i>Xenoturbella bocki</i> . Journal of Experimental Biology, 2010, 213, 2647-2654.	1.7	10
430	Distinct Mechanisms Produce Functionally Complementary Actions of Neuropeptides That Are Structurally Related But Derived from Different Precursors. Journal of Neuroscience, 2010, 30, 131-147.	3.6	50
431	Endogenous Peptide Discovery of the Rat Circadian Clock. Molecular and Cellular Proteomics, 2010, 9, 285-297.	3.8	83
432	Genome-Wide Analyses Reveal a Role for Peptide Hormones in Planarian Germline Development. PLoS Biology, 2010, 8, e1000509.	5.6	249

#	Article	IF	CITATIONS
433	Neuropeptide Release Is Impaired in a Mouse Model of Fragile X Mental Retardation Syndrome. ACS Chemical Neuroscience, 2010, 1, 306-314.	3.5	19
434	A Hybrid, <i>de Novo</i> Based, Genome-Wide Database Search Approach Applied to the Sea Urchin Neuropeptidome. Journal of Proteome Research, 2010, 9, 990-996.	3.7	37
435	Spatial Correlation of Confocal Raman Scattering and Secondary Ion Mass Spectrometric Molecular Images of Lignocellulosic Materials. Analytical Chemistry, 2010, 82, 2608-2611.	6.5	41
436	Production of Nitric Oxide within the <i>Aplysia californica</i> Nervous System. ACS Chemical Neuroscience, 2010, 1, 182-193.	3.5	19
437	Quantitative Neuroproteomics of the Synapse. Methods in Molecular Biology, 2010, 615, 227-246.	0.9	12
438	Nanofluidics in chemical analysis. Chemical Society Reviews, 2010, 39, 1060-1072.	38.1	168
439	Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic–microfluidic devices. Lab on A Chip, 2010, 10, 1237.	6.0	18
440	Mass Spectrometry Imaging. Methods in Molecular Biology, 2010, , .	0.9	26
441	Direct Cellular Peptidomics of Supraoptic Magnocellular and Hippocampal Neurons in Low-Density Cocultures. ACS Chemical Neuroscience, 2010, 1, 36-48.	3.5	19
442	A Mass Spectrometry Primer for Mass Spectrometry Imaging. Methods in Molecular Biology, 2010, 656, 21-49.	0.9	41
443	Mass Spectrometry Imaging Using the Stretched Sample Approach. Methods in Molecular Biology, 2010, 656, 465-479.	0.9	8
444	Quantitative peptidomics reveal brain peptide signatures of behavior. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2383-2388.	7.1	125
445	Discrete molecular states in the brain accompany changing responses to a vocal signal. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11364-11369.	7.1	75
446	Characterization of the prohormone complement in cattle using genomic libraries and cleavage prediction approaches. BMC Genomics, 2009, 10, 228.	2.8	22
447	Analysis of endogenous d-amino acid-containing peptides in Metazoa. Bioanalytical Reviews, 2009, 1, 7-24.	0.2	66
448	23rd International Symposium on Microscale Bioseparations. Foreword. Journal of Chromatography A, 2009, 1216, 8263-8264.	3.7	0
449	Capillary Electrophoresis with Electrospray Ionization Mass Spectrometric Detection for Single-Cell Metabolomics. Analytical Chemistry, 2009, 81, 5858-5864.	6.5	184
450	Centrifugal Sedimentation for Selectively Packing Channels with Silica Microbeads in Three-Dimensional Micro/Nanofluidic Devices. Analytical Chemistry, 2009, 81, 2022-2026.	6.5	14

#	Article	IF	CITATIONS
451	Multidimensional Separation of Chiral Amino Acid Mixtures in a Multilayered Three-Dimensional Hybrid Microfluidic/Nanofluidic Device. Analytical Chemistry, 2009, 81, 2715-2722.	6.5	43
452	Collecting Peptide Release from the Brain Using Porous Polymer Monolith-Based Solid Phase Extraction Capillaries. Analytical Chemistry, 2009, 81, 5433-5438.	6.5	18
453	The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science, 2009, 324, 522-528.	12.6	1,038
454	Characterizing intercellular signaling peptides in drug addiction. Neuropharmacology, 2009, 56, 196-204.	4.1	7
455	Textural guidance cues for controlling process outgrowth of mammalian neurons. Lab on A Chip, 2009, 9, 122-131.	6.0	76
456	MALDI Mass Spectrometric Imaging Using the Stretched Sample Method to Reveal Neuropeptide Distributions in <i>Aplysia</i> Nervous Tissue. Analytical Chemistry, 2009, 81, 9402-9409.	6.5	37
457	Comparative analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle. Mammalian Genome, 2008, 19, 106-120.	2.2	23
458	SIMS and MALDI MS imaging of the spinal cord. Proteomics, 2008, 8, 3746-3754.	2.2	83
459	Adapting the stretched sample method from tissue profiling to imaging. Proteomics, 2008, 8, 3809-3815.	2.2	27
460	Microproteomics: Analysis of protein diversity in small samples. Mass Spectrometry Reviews, 2008, 27, 316-330.	5.4	77
461	Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes. Electrophoresis, 2008, 29, 1237-1244.	2.4	15
462	Simultaneous nitric oxide and dehydroascorbic acid imaging by combining diaminofluoresceins and diaminorhodamines. Journal of Neuroscience Methods, 2008, 168, 373-382.	2.5	46
463	Contributions of capillary electrophoresis to neuroscience. Journal of Chromatography A, 2008, 1184, 144-158.	3.7	60
464	5–HT and 5–HT-SO4, but not tryptophan or 5-HIAA levels in single feeding neurons track animal hunger state. Journal of Neurochemistry, 2008, 104, 1358-1363.	3.9	26
465	Detection of nitric oxide in single cells. Analyst, The, 2008, 133, 423.	3.5	77
466	Immobilization of DNAzyme catalytic beacons on PMMA for Pb2+ detection. Lab on A Chip, 2008, 8, 786.	6.0	70
467	One-Step Sampling, Extraction, and Storage Protocol for Peptidomics Using Dihydroxybenzoic Acid. Analytical Chemistry, 2008, 80, 3379-3386.	6.5	33
468	Peptides in the Brain: Mass Spectrometry–Based Measurement Approaches and Challenges. Annual Review of Analytical Chemistry, 2008, 1, 451-483.	5.4	136

#	Article	IF	CITATIONS
469	An On-Chip Fluorogenic Enzyme Assay Using a Multilayer Microchip Interconnected With a Nanocapillary Array Membrane. IEEE Sensors Journal, 2008, 8, 601-607.	4.7	12
470	Electrokinetically driven fluidic transport in integrated three-dimensional microfluidic devices incorporating gold-coated nanocapillary array membranes. Lab on A Chip, 2008, 8, 1625.	6.0	19
471	Nanofluidics: Systems and Applications. IEEE Sensors Journal, 2008, 8, 441-450.	4.7	93
472	Chapter 13 Imaging of Cells and Tissues with Mass Spectrometry. Methods in Cell Biology, 2008, 89, 361-390.	1.1	35
473	Detecting <scp>d</scp> -Amino Acid-Containing Neuropeptides Using Selective Enzymatic Digestion. Analytical Chemistry, 2008, 80, 2874-2880.	6.5	37
474	Neuropeptidomics of the Supraoptic Rat Nucleus. Journal of Proteome Research, 2008, 7, 4992-5003.	3.7	59
475	Quantitative Measurements of Cellâ^'Cell Signaling Peptides with Single-Cell MALDI MS. Analytical Chemistry, 2008, 80, 7128-7136.	6.5	94
476	Mass spectrometry-based discovery of circadian peptides. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12527-12532.	7.1	101
477	Prediction of neuropeptide cleavage sites in insects. Bioinformatics, 2008, 24, 815-825.	4.1	58
478	A Python analytical pipeline to identify prohormone precursors and predict prohormone cleavage sites. Frontiers in Neuroinformatics, 2008, 2, 7.	2.5	18
479	<i>Aplysia</i> Bag Cells Function as a Distributed Neurosecretory Network. Journal of Neurophysiology, 2008, 99, 333-343.	1.8	35
480	From Hunger to Satiety: Reconfiguration of a Feeding Network by Aplysia Neuropeptide Y. Journal of Neuroscience, 2007, 27, 3490-3502.	3.6	92
481	Mass Spectrometric Imaging of the Nervous System. Current Pharmaceutical Design, 2007, 13, 3325-3334.	1.9	24
482	Recombinant production and structural studies of the Aplysia water-borne protein pheromone enticin indicates it has a novel disulfide stabilized fold. Peptides, 2007, 28, 94-102.	2.4	7
483	Neuropeptide precursors in Tribolium castaneum. Peptides, 2007, 28, 1282-1291.	2.4	39
484	Direct Immobilization of Fabâ€~ in Nanocapillaries for Manipulating Mass-Limited Samples. Journal of the American Chemical Society, 2007, 129, 7620-7626.	13.7	52
485	Serotonin catabolism in the central and enteric nervous systems of rats upon induction of serotonin syndrome. Journal of Neurochemistry, 2007, 103, 070630082917006-???.	3.9	19
486	Mass spectrometric imaging of peptide release from neuronal cells within microfluidic devices. Lab on A Chip, 2007, 7, 1454.	6.0	61

#	Article	IF	CITATIONS
487	Comparative analysis of binary logistic regression to artificial neural networks in predicting precursor sequence cleavage. , 2007, , .		0
488	Transparent triethylamine ontaining MALDI matrices. Israel Journal of Chemistry, 2007, 47, 185-193.	2.3	0
489	Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes. Biomicrofluidics, 2007, 1, 021502.	2.4	19
490	Autonomic Control Network Active in Aplysia During Locomotion Includes Neurons That Express Splice Variants of R15-Neuropeptides. Journal of Neurophysiology, 2007, 97, 481-491.	1.8	13
491	Lipid imaging in the zebra finch brain with secondary ion mass spectrometry. International Journal of Mass Spectrometry, 2007, 260, 121-127.	1.5	31
492	Characterizing peptides in individual mammalian cells using mass spectrometry. Nature Protocols, 2007, 2, 1987-1997.	12.0	79
493	<i>Aplysia</i> temptinâ€fâ^'â€fthe â€~glue' in the waterâ€borne attractin pheromone complex. FEBS Journal, 274, 5425-5437.	, 2007, 4.7	24
494	Microfluidic devices for culturing primary mammalian neurons at low densities. Lab on A Chip, 2007, 7, 987.	6.0	179
495	Solution to the neurochemical challenge. Analytical and Bioanalytical Chemistry, 2007, 388, 3-3.	3.7	1
496	Measuring salty samples without adducts with MALDI MS. International Journal of Mass Spectrometry, 2007, 260, 237-242.	1.5	33
497	Imaging mass spectrometry imaging. International Journal of Mass Spectrometry, 2007, 260, 89.	1.5	5
498	Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab on A Chip, 2006, 6, 667.	6.0	116
499	Measuring Nitric Oxide in Single Neurons by Capillary Electrophoresis with Laser-Induced Fluorescence:Â Use of Ascorbate Oxidase in Diaminofluorescein Measurements. Analytical Chemistry, 2006, 78, 1859-1865.	6.5	45
500	Nanofluidics and the role of nanocapillary array membranes in mass-limited chemical analysis. Analyst, The, 2006, 131, 705.	3.5	28
501	Incorporation of a DNAzyme into Au-coated nanocapillary array membranes with an internal standard for Pb(ii) sensing. Analyst, The, 2006, 131, 41-47.	3.5	65
502	Two Toxins from Conus striatus That Individually Induce Tetanic Paralysis. Biochemistry, 2006, 45, 14212-14222.	2.5	24
503	Massively Parallel Sample Preparation for the MALDI MS Analyses of Tissues. Analytical Chemistry, 2006, 78, 6826-6832.	6.5	56
504	Profiling Signaling Peptides in Single Mammalian Cells Using Mass Spectrometry. Analytical Chemistry, 2006, 78, 7267-7272.	6.5	96

#	Article	IF	CITATIONS
505	Nanofluidic Injection and Heterogeneous Kinetics of Organomercaptan Surface Displacement Reactions on Colloidal Gold in a Microfluidic Stream. Analytical Chemistry, 2006, 78, 2335-2341.	6.5	9
506	Bridging Neuropeptidomics and Genomics with Bioinformatics:Â Prediction of Mammalian Neuropeptide Prohormone Processing. Journal of Proteome Research, 2006, 5, 1162-1167.	3.7	60
507	The first Î ³ -carboxyglutamate-containing neuropeptide. Neurochemistry International, 2006, 49, 223-229.	3.8	19
508	Prediction of neuropeptide prohormone cleavages with application to RFamides. Peptides, 2006, 27, 1087-1098.	2.4	44
509	Screening for post-translational modifications in conotoxins using liquid chromatography/mass spectrometry: an important component of conotoxin discovery. Toxicon, 2006, 47, 688-699.	1.6	60
510	Hardware and Methods. , 2006, , 123-139.		2
511	d-Aspartate as a putative cell-cell signaling molecule in theAplysia californicacentral nervous system. Journal of Neurochemistry, 2006, 97, 595-606.	3.9	30
512	Ubiquitous presence of argininosuccinate at millimolar levels in the central nervous system of Aplysia californica. Journal of Neurochemistry, 2006, 101, 632-640.	3.9	10
513	Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443, 931-949.	27.8	1,648
514	Self-assembled monolayers of alkanethiols on gold modulate electrophysiological parameters and cellular morphology of cultured neurons. Biomaterials, 2006, 27, 1665-1669.	11.4	37
515	Confirmation of peak assignments in capillary electrophoresis using immunoprecipitation. Journal of Chromatography A, 2006, 1106, 56-60.	3.7	26
516	A multichannel native fluorescence detection system for capillary electrophoretic analysis of neurotransmitters in single neurons. Analytical and Bioanalytical Chemistry, 2006, 387, 97-105.	3.7	69
517	Single cell analysis. Analytical and Bioanalytical Chemistry, 2006, 387, 1-2.	3.7	23
518	Neurochemical challenge. Analytical and Bioanalytical Chemistry, 2006, 387, 3-4.	3.7	1
519	Identification and characterization of homologues of vertebrate β-thymosin in the marine molluskAplysia californica. Journal of Mass Spectrometry, 2006, 41, 1030-1040.	1.6	25
520	Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrometry Reviews, 2006, 25, 77-98.	5.4	164
521	NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Research, 2006, 34, W267-W272.	14.5	218
522	Capillary electrophoresis of ultrasmall carboxylate functionalized silicon nanoparticles. Journal of Chemical Physics, 2006, 125, 081103.	3.0	20

#	Article	IF	CITATIONS
523	From the Genome to the Proteome: Uncovering Peptides in the Apis Brain. Science, 2006, 314, 647-649.	12.6	309
524	Serotonin Catabolism and the Formation and Fate of 5-Hydroxyindole Thiazolidine Carboxylic Acid. Journal of Biological Chemistry, 2006, 281, 13463-13470.	3.4	29
525	Coupling nuclear magnetic resonance to capillary electrophoresis. Comprehensive Analytical Chemistry, 2005, , 583-616.	1.3	0
526	Direct single cell determination of nitric oxide synthase related metabolites in identified nitrergic neurons. Journal of Inorganic Biochemistry, 2005, 99, 929-939.	3.5	52
527	MALDI-MS imaging of features smaller than the size of the laser beam. Journal of the American Society for Mass Spectrometry, 2005, 16, 1654-1659.	2.8	249
528	Imaging mass spectrometry: fundamentals and applications to drug discovery. Drug Discovery Today, 2005, 10, 823-837.	6.4	187
529	A multilayer poly(dimethylsiloxane) electrospray ionization emitter for sample injection and online mass spectrometric detection. Electrophoresis, 2005, 26, 4684-4690.	2.4	30
530	Online microdialysis-dynamic nanoelectrospray ionization-mass spectrometry for monitoring neuropeptide secretion. Journal of Mass Spectrometry, 2005, 40, 924-931.	1.6	27
531	The detection of nitrated tyrosine in neuropeptides: a MALDI matrix-dependent response. Analytical and Bioanalytical Chemistry, 2005, 382, 22-27.	3.7	18
532	Modeling and Simulation of Ionic Currents in Three-Dimensional Microfluidic Devices with Nanofluidic Interconnects. Journal of Nanoparticle Research, 2005, 7, 507-516.	1.9	54
533	Intraspecific variation of venom injected by fish-hunting Conussnails. Journal of Experimental Biology, 2005, 208, 2873-2883.	1.7	75
534	Identification of a New Neuropeptide Precursor Reveals a Novel Source of Extrinsic Modulation in the Feeding System of Aplysia. Journal of Neuroscience, 2005, 25, 9637-9648.	3.6	37
535	Measuring d-amino acid-containing neuropeptides with capillary electrophoresis. Analyst, The, 2005, 130, 1198.	3.5	42
536	Comparative Analysis of a Neurotoxin from Calliostoma canaliculatum by On-Line Capillary Isotachophoresis/H NMR and Diffusion 1H NMR. Journal of Natural Products, 2005, 68, 162-167.	3.0	28
537	Monitoring Activity-Dependent Peptide Release from the CNS Using Single-Bead Solid-Phase Extraction and MALDI TOF MS Detection. Analytical Chemistry, 2005, 77, 1580-1587.	6.5	44
538	Miniaturized Lead Sensor Based on Lead-Specific DNAzyme in a Nanocapillary Interconnected Microfluidic Device. Environmental Science & Technology, 2005, 39, 3756-3761.	10.0	123
539	Profiling pH Gradients Across Nanocapillary Array Membranes Connecting Microfluidic Channels. Journal of the American Chemical Society, 2005, 127, 13928-13933.	13.7	48
540	Immobilization of a Catalytic DNA Molecular Beacon on Au for Pb(II) Detection. Analytical Chemistry, 2005, 77, 442-448.	6.5	119

#	Article	IF	CITATIONS
541	Subcellular Analysis ofd-Aspartate. Analytical Chemistry, 2005, 77, 7190-7194.	6.5	66
542	Spurious serotonin dimer formation using electrokinetic injection in capillary electrophoresis from small volume biological samples. Analyst, The, 2005, 130, 147.	3.5	6
543	Vitamin E Imaging and Localization in the Neuronal Membrane. Journal of the American Chemical Society, 2005, 127, 12152-12153.	13.7	121
544	Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates. Applied Physics Letters, 2004, 85, 1241-1243.	3.3	35
545	Engineering the morphology and electrophysiological parameters of cultured neurons by microfluidic surface patterning. FASEB Journal, 2004, 18, 1267-1269.	0.5	42
546	Structural and functional analysis of Aplysia attractins, a family of water-borne protein pheromones with interspecific attractiveness. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6929-6933.	7.1	53
547	Characterization of Aplysia Enticin and Temptin, Two Novel Water-borne Protein Pheromones That Act in Concert with Attractin to Stimulate Mate Attraction. Journal of Biological Chemistry, 2004, 279, 25614-25622.	3.4	71
548	How Much at Risk Are Cone Snails?. Science, 2004, 303, 955-957.	12.6	14
549	Systemic serotonin sulfate in opisthobranch mollusks. Journal of Neurochemistry, 2004, 90, 734-742.	3.9	14
550	Chiral separation of nanomole amounts of alprenolol with cITP/NMR. Analytical and Bioanalytical Chemistry, 2004, 378, 1528-1535.	3.7	25
551	Nanocapillary Arrays Effect Mixing and Reaction in Multilayer Fluidic Structures. Angewandte Chemie - International Edition, 2004, 43, 1862-1865.	13.8	42
552	Nitric oxide regulates swimming in the jellyfish <i>Aglantha digitale</i> . Journal of Comparative Neurology, 2004, 471, 26-36.	1.6	57
553	Determining sequences and post-translational modifications of novel conotoxins inConus victoriae using cDNA sequencing and mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 548-557.	1.6	56
554	Dual Microcoil NMR Probe Coupled to Cyclic CE for Continuous Separation and Analyte Isolation. Analytical Chemistry, 2004, 76, 4894-4900.	6.5	25
555	Retention characteristics of protonated mobile phases injected into deuterated mobile phases in capillary liquid chromatography (LC) using on-line nuclear magnetic resonance (NMR) detection. Analyst, The, 2004, 129, 629.	3.5	1
556	Measurement of nitric oxide by 4,5-diaminofluorescein without interferences. Analyst, The, 2004, 129, 1200.	3.5	33
557	Microfluidic Separation and Gateable Fraction Collection for Mass-Limited Samples. Analytical Chemistry, 2004, 76, 6419-6425.	6.5	63
558	Peer Reviewed: The Chemistry of Thought: Neurotransmitters in the Brain. Analytical Chemistry, 2004, 76, 120 A-128 A.	6.5	37

#	Article	IF	CITATIONS
559	Characterization of the Physicochemical Parameters of Dense Core Atrial Gland and Lucent Red Hemiduct Vesicles inAplysiacalifornica. Analytical Chemistry, 2004, 76, 2331-2335.	6.5	11
560	Sequencing and Mass Profiling Highly Modified Conotoxins Using Global Reduction/Alkylation Followed by Mass Spectrometry. Analytical Chemistry, 2004, 76, 6541-6547.	6.5	39
561	Quantitative Submonolayer Spatial Mapping of Arg-Gly-Asp-Containing Peptide Organomercaptan Gradients on Gold with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 2004, 76, 1-8.	6.5	37
562	The chemistry of thought: neurotransmitters in the brain. Analytical Chemistry, 2004, 76, 121A-128A.	6.5	8
563	Single-cell analysis by capillary electrophoresis. Analytical and Bioanalytical Chemistry, 2003, 375, 28-29.	3.7	50
564	Analysis of serotonin release from single neuron soma using capillary electrophoresis and laser-induced fluorescence with a pulsed deep-UV NeCu laser. Analytical and Bioanalytical Chemistry, 2003, 377, 1007-1013.	3.7	45
565	Endogenous neurotrophic factors enhance neurite growth by bag cell neurons ofAplysia. Journal of Neurobiology, 2003, 56, 78-93.	3.6	7
566	Measuring Reaction Kinetics by Using Multiple Microcoil NMR Spectroscopy. Angewandte Chemie - International Edition, 2003, 42, 4669-4672.	13.8	54
567	Hyphenation of capillary separations with nuclear magnetic resonance spectroscopy. Journal of Chromatography A, 2003, 1000, 819-840.	3.7	67
568	Discovering new neuropeptides using single-cell mass spectrometry. TrAC - Trends in Analytical Chemistry, 2003, 22, 515-521.	11.4	17
569	Spatial profiling invertebrate ganglia using MALDI MS. Journal of the American Society for Mass Spectrometry, 2003, 14, 752-759.	2.8	110
570	Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sensors and Actuators A: Physical, 2003, 102, 223-233.	4.1	105
571	Serotonin catabolism depends upon location of release: characterization of sulfated and γ-glutamylated serotonin metabolites in Aplysia californica. Journal of Neurochemistry, 2003, 85, 830-830.	3.9	0
572	Serotonin catabolism depends upon location of release: characterization of sulfated and γ-glutamylated serotonin metabolites inAplysia californica. Journal of Neurochemistry, 2003, 84, 1358-1366.	3.9	35
573	Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. Journal of Neurochemistry, 2003, 87, 642-656.	3.9	130
574	Spectral restoration from low signal-to-noise, distorted NMR signals: application to hyphenated capillary electrophoresis-NMR. Journal of Magnetic Resonance, 2003, 162, 133-140.	2.1	16
575	Micromixer-Based Time-Resolved NMR:Â Applications to Ubiquitin Protein Conformation. Analytical Chemistry, 2003, 75, 956-960.	6.5	86
576	Nanocapillary Array Interconnects for Gated Analyte Injections and Electrophoretic Separations in Multilayer Microfluidic Architectures. Analytical Chemistry, 2003, 75, 2224-2230.	6.5	101

#	Article	IF	CITATIONS
577	Spatial Profiling with MALDI MS:Â Distribution of Neuropeptides within Single Neurons. Analytical Chemistry, 2003, 75, 5374-5380.	6.5	157
578	From Precursor to Final Peptides:Â A Statistical Sequence-Based Approach to Predicting Prohormone Processing. Journal of Proteome Research, 2003, 2, 650-656.	3.7	39
579	Gateable Nanofluidic Interconnects for Multilayered Microfluidic Separation Systems. Analytical Chemistry, 2003, 75, 1861-1867.	6.5	204
580	Mobile phase compensation to improve NMR spectral properties during solvent gradients. Analyst, The, 2003, 128, 421-426.	3.5	11
581	Ultrafast capillary electrophoresis and bioanalytical applications. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3545-3546.	7.1	12
582	Characterization of a Novel Gastropod Toxin (6-Bromo-2-mercaptotryptamine) That Inhibits Shaker K Channel Activity. Journal of Biological Chemistry, 2003, 278, 34934-34942.	3.4	32
583	PRQFVamide, a Novel Pentapeptide Identified From the CNS and Gut ofAplysia. Journal of Neurophysiology, 2003, 89, 3114-3127.	1.8	39
584	NMR Detection in Capillary Electrophoresis and Capillary Electrochromatography. , 2003, , .		1
585	Interfering with Nitric Oxide Measurements. Journal of Biological Chemistry, 2002, 277, 48472-48478.	3.4	177
586	On-Line Temperature Monitoring in a Capillary Electrochromatography Frit Using Microcoil NMR. Analytical Chemistry, 2002, 74, 4583-4587.	6.5	31
587	Sample Depletion of the Matrix-Assisted Laser Desorption Process Monitored Using Radionuclide Detection. Analytical Chemistry, 2002, 74, 6200-6204.	6.5	23
588	Ascorbic Acid Assays of Individual Neurons and Neuronal Tissues Using Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Analytical Chemistry, 2002, 74, 5614-5620.	6.5	76
589	Single-Neuron Analysis Using CE Combined with MALDI MS and Radionuclide Detection. Analytical Chemistry, 2002, 74, 497-503.	6.5	79
590	NMR Detection with Multiple Solenoidal Microcoils for Continuous-Flow Capillary Electrophoresis. Analytical Chemistry, 2002, 74, 5550-5555.	6.5	55
591	Anatomical Correlates of Venom Production in Conus californicus. Biological Bulletin, 2002, 203, 27-41.	1.8	52
592	Capillary Isotachophoresis/NMR:Â Extension to Trace Impurity Analysis and Improved Instrumental Coupling. Analytical Chemistry, 2002, 74, 2306-2313.	6.5	58
593	Insights into the cITP Process Using On-Line NMR Spectroscopy. Analytical Chemistry, 2002, 74, 4191-4197.	6.5	35
594	Orcokinin peptides in developing and adult crustacean stomatogastric nervous systems and pericardial organs. Journal of Comparative Neurology, 2002, 444, 227-244.	1.6	95

#	Article	IF	CITATIONS
595	Capillary electrophoresis with wavelength-resolved laser-induced fluorescence detection. Analytical and Bioanalytical Chemistry, 2002, 373, 332-343.	3.7	53
596	The continued evolution of hyphenated instruments. Analytical and Bioanalytical Chemistry, 2002, 373, 321-322.	3.7	12
597	Microscale NMR. Current Opinion in Chemical Biology, 2002, 6, 711-716.	6.1	58
598	A novel prohormone processing site in Aplysia californica: the Leu-Leu rule. Journal of Neurochemistry, 2002, 82, 1398-1405.	3.9	12
599	Manipulating Molecular Transport through Nanoporous Membranes by Control of Electrokinetic Flow:Â Effect of Surface Charge Density and Debye Length. Langmuir, 2001, 17, 6298-6303.	3.5	132
600	Aplysia Attractin: Biophysical Characterization and Modeling of a Water-Borne Pheromone. Biophysical Journal, 2001, 81, 463-472.	0.5	38
601	Experimental Factors Controlling Analyte Ion Generation in Laser Desorption/Ionization Mass Spectrometry on Porous Silicon. Analytical Chemistry, 2001, 73, 3639-3645.	6.5	127
602	Sample Concentration and Separation for Nanoliter-Volume NMR Spectroscopy Using Capillary Isotachophoresis. Journal of the American Chemical Society, 2001, 123, 3159-3160.	13.7	82
603	Ultraviolet Native Fluorescence Detection in Capillary Electrophoresis Using a Metal Vapor NeCu Laser. Analytical Chemistry, 2001, 73, 5620-5624.	6.5	48
604	The Enterins: A Novel Family of Neuropeptides Isolated from the Enteric Nervous System and CNS of <i>Aplysia</i> . Journal of Neuroscience, 2001, 21, 8247-8261.	3.6	79
605	Neurotransmitter sampling and storage for capillary electrophoresis analysis. Fresenius' Journal of Analytical Chemistry, 2001, 369, 206-211.	1.5	18
606	Cerebrin prohormone processing, distribution and action in Aplysia californica. Journal of Neurochemistry, 2001, 77, 1569-1580.	3.9	45
607	Direct assay of Aplysia tissues and cells with laser desorption/ionization mass spectrometry on porous silicon. Journal of Mass Spectrometry, 2001, 36, 1317-1322.	1.6	73
608	A Probe Design for the Acquisition of Homonuclear, Heteronuclear, and Inverse Detected NMR Spectra from Multiple Samples. Journal of Magnetic Resonance, 2001, 153, 254-258.	2.1	36
609	1H NMR Characterization of the Product from Single Solid-Phase Resin Beads Using Capillary NMR Flow Probes. Journal of Magnetic Resonance, 2001, 153, 215-222.	2.1	22
610	Analysis of cellular release using capillary electrophoresis and matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis, 2001, 22, 3752-3758.	2.4	56
611	Union of capillary high-performance liquid chromatography and microcoil nuclear magnetic resonance spectroscopy applied to the separation and identification of terpenoids. Journal of Chromatography A, 2001, 922, 139-149.	3.7	72
612	Determination of salicylate, gentisic acid and salicyluric acid in human urine by capillary electrophoresis with laser-induced fluorescence detection. Biomedical Applications, 2001, 752, 17-31.	1.7	60

#	Article	IF	CITATIONS
613	Three-Dimensional Fluidic Architectures Using Nanofluidic Diodes to Control Transport between Microfluidic Channels in Microelectromechanical Devices. , 2001, , 60-62.		8
614	Design and Fabrication of Multiple Nanofluidic Interconnects for Three-Dimensional Microanalytical Systems. , 2001, , 195-196.		5
615	Characterization of Molecular Transport within Gateable Nanofluidic Interconnects for Three-Dimensional Microfluidic Systems. , 2001, , 199-200.		3
616	The Miniaturization of NMR Probes Hyphenated to Capillary Scale Separations. , 2001, , 417-419.		0
617	Determination of salsolinol enantiomers by gas chromatography-mass spectrometry with cyclodextrin chiral columns. Analytica Chimica Acta, 2000, 420, 81-88.	5.4	21
618	Measuring the peptides in individual organelles with mass spectrometry. Nature Biotechnology, 2000, 18, 172-175.	17.5	131
619	Single-cell MALDI: a new tool for direct peptide profiling. Trends in Biotechnology, 2000, 18, 151-160.	9.3	236
620	Characterizing the Hez-PBAN gene products in neuronal clusters with immunocytochemistry and MALDI MS. Journal of Insect Physiology, 2000, 46, 221-230.	2.0	39
621	Direct cellular assays using off-line capillary electrophoresis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analyst, The, 2000, 125, 555-562.	3.5	33
622	Peptide Profiling of Cells with Multiple Gene Products:Â Combining Immunochemistry and MALDI Mass Spectrometry with On-Plate Microextraction. Analytical Chemistry, 2000, 72, 3867-3874.	6.5	52
623	Monitoring Temperature Changes in Capillary Electrophoresis with Nanoliter-Volume NMR Thermometry. Analytical Chemistry, 2000, 72, 4991-4998.	6.5	91
624	Heterogeneity within MALDI Samples As Revealed by Mass Spectrometric Imaging. Analytical Chemistry, 2000, 72, 30-36.	6.5	190
625	Insulin Prohormone Processing, Distribution, and Relation to Metabolism inAplysia californica. Journal of Neuroscience, 1999, 19, 7732-7741.	3.6	126
626	Characterization of the Aplysia californicaCerebral Ganglion F Cluster. Journal of Neurophysiology, 1999, 81, 1251-1260.	1.8	38
627	Formation of N-Pyroglutamyl Peptides from N-Glu and N-Gln Precursors in Aplysia Neurons. Journal of Neurochemistry, 1999, 72, 676-681.	3.9	52
628	Characterization of peptides from Aplysia using microbore liquid chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry guided purification. Journal of Chromatography A, 1999, 830, 105-113.	3.7	31
629	Are you active in there, kinase?. Nature Biotechnology, 1999, 17, 752-753.	17.5	0
630	Assaying neurotransmitters in and around single neurons with information-rich detectors. Analytica Chimica Acta, 1999, 400, 13-26.	5.4	15

#	Article	IF	CITATIONS
631	In Situ Sequencing of Peptides from Biological Tissues and Single Cells Using MALDIâ^'PSD/CID Analysis. Analytical Chemistry, 1999, 71, 5451-5458.	6.5	99
632	Rapid Two-Dimensional Inverse Detected Heteronuclear Correlation Experiments with <100 nmol Samples with Solenoidal Microcoil NMR Probes. Journal of the American Chemical Society, 1999, 121, 2333-2334.	13.7	27
633	High-Resolution NMR Spectroscopy of Sample Volumes from 1 nL to 10 μL. Chemical Reviews, 1999, 99, 3133-3152.	47.7	239
634	Nanoliter-Volume1H NMR Detection Using Periodic Stopped-Flow Capillary Electrophoresis. Analytical Chemistry, 1999, 71, 3070-3076.	6.5	111
635	A Microcoil NMR Probe for Coupling Microscale HPLC with On-Line NMR Spectroscopy. Analytical Chemistry, 1999, 71, 5335-5339.	6.5	57
636	Monitoring Cellular Release with Dynamic Channel Electrophoresis. Analytical Chemistry, 1999, 71, 28-33.	6.5	18
637	Factors Affecting Quantitative Electrokinetic Injections from Submicroliter Conductive Vials in Capillary Electrophoresis. Analytical Chemistry, 1999, 71, 4014-4022.	6.5	12
638	Independent Optimization of Capillary Electrophoresis Separation and Native Fluorescence Detection Conditions for Indolamine and Catecholamine Measurements. Analytical Chemistry, 1999, 71, 4997-5002.	6.5	99
639	Multiple Solenoidal Microcoil Probes for High-Sensitivity, High-Throughput Nuclear Magnetic Resonance Spectroscopy. Analytical Chemistry, 1999, 71, 4815-4820.	6.5	73
640	Separation of amino acid and peptide stereoisomers by nonionic micelle-mediated capillary electrophoresis after chiral derivatization. Journal of Chromatography A, 1998, 800, 345-354.	3.7	54
641	Peroxyoxalate chemiluminescence detection for capillary electrophoresis using membrane collection. Journal of Separation Science, 1998, 10, 329-337.	1.0	15
642	Mass spectrometric survey of interganglionically transported peptides in aplysia. Peptides, 1998, 19, 1425-1433.	2.4	58
643	Single Neuron Analysis by Capillary Electrophoresis with Fluorescence Spectroscopy. Neuron, 1998, 20, 173-181.	8.1	103
644	Software: What Else Would You Need from a Technical Graphics Package?. Analytical Chemistry, 1998, 70, 200A-201A.	6.5	0
645	Microcoils significantly boost NMR mass sensitivity and provide new detection opportunities.: The Nanoliter Niche. Analytical Chemistry, 1998, 70, 257A-264A.	6.5	50
646	Capillary Electrophoresis Analysis of Nitric Oxide Synthase Related Metabolites in Single Identified Neurons. Analytical Chemistry, 1998, 70, 2243-2247.	6.5	56
647	High-Resolution Microcoil NMR for Analysis of Mass-Limited, Nanoliter Samples. Analytical Chemistry, 1998, 70, 645-650.	6.5	107
648	Non-Enzymatic Production of Nitric Oxide (NO) from NO Synthase Inhibitors. Biochemical and Biophysical Research Communications, 1998, 253, 571-576.	2.1	62

#	Article	IF	CITATIONS
649	Proteolytic processing of the Aplysia egg-laying hormone prohormone. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3972-3977.	7.1	92
650	Simple Sheath Flow Reactor for Post-column Fluorescence Derivatization in Capillary Electrophoresis. Analyst, The, 1997, 122, 1581-1585.	3.5	29
651	Using microcontact printing to fabricate microcoils on capillaries for high resolution proton nuclear magnetic resonance on nanoliter volumes. Applied Physics Letters, 1997, 70, 2464-2466.	3.3	89
652	High resolution multichannel fluorescence detection for capillary electrophoresis Application to multicomponent analysis. Journal of Chromatography A, 1997, 788, 173-183.	3.7	10
653	On-line electrogenerated Ru(bpy)33+ chemiluminescent detection of β-blockers separated with capillary electrophoresis. Analytica Chimica Acta, 1997, 347, 289-293.	5.4	92
654	Nitrite and Nitrate Levels in Individual Molluscan Neurons: Single ell Capillary Electrophoresis Analysis. Journal of Neurochemistry, 1997, 69, 110-115.	3.9	62
655	Tutorial review. Capillary electrophoresis with wavelength-resolved fluorescence detection. Analyst, The, 1996, 121, 45R.	3.5	31
656	Detection of Radionuclides in Capillary Electrophoresis Using a Phosphor-Imaging Detector. Analytical Chemistry, 1996, 68, 3922-3927.	6.5	18
657	Channel Electrophoresis for Kinetic Assays. Analytical Chemistry, 1996, 68, 2471-2476.	6.5	21
658	Two-Dimensional Separations:Â Capillary Electrophoresis Coupled to Channel Gel Electrophoresis. Analytical Chemistry, 1996, 68, 3928-3933.	6.5	34
659	Dynamic On-Column pH Monitoring in Capillary Electrophoresis:Â Application to Volume-Limited Outlet Vials. Analytical Chemistry, 1996, 68, 2693-2698.	6.5	39
660	Studies of the degradation products of nisin, a peptide antibiotic, using capillary electrophoresis with off-line mass spectrometry. Journal of Chromatography A, 1996, 735, 375-385.	3.7	21
661	Excess Salt Removal with Matrix Rinsing: Direct Peptide Profiling of Neurons from Marine Invertebrates Using Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry. , 1996, 31, 1126-1130.		99
662	Characterizing submicron vesicles with wavelength-resolved fluorescence in flow cytometry. , 1996, 25, 144-155.		27
663	Charge-coupled device based fluorescence detection in capillary electrophoresis. Analytical Spectroscopy Library, 1995, 6, 385-398.	0.1	2
664	Assaying single cells with capillary electrophoresis. TrAC - Trends in Analytical Chemistry, 1995, 14, 170-176.	11.4	43
665	Wavelength-Resolved Fluorescence Detection in Capillary Electrophoresis. Analytical Chemistry, 1995, 67, 139-144.	6.5	75
666	Online NMR detection of amino acids and peptides in microbore LC. Analytical Chemistry, 1995, 67, 3101-3107.	6.5	82

#	Article	IF	CITATIONS
667	Native fluorescence detection and spectral differentiation of peptides containing tryptophan and tyrosine in capillary electrophoresis. Analytical Chemistry, 1995, 67, 3421-3426.	6.5	89
668	Nanoliter Volume Kinetic Assays. Journal of the American Chemical Society, 1995, 117, 8871-8872.	13.7	19
669	Analysis of trace level peptides using capillary electrophoresis with UV laser-induced fluorescence. Analytica Chimica Acta, 1995, 307, 163-171.	5.4	45
670	Enhanced separation and detection of serum bilirubin species by capillary electrophoresis using a mixed anionic surfactant—protein buffer system with laser-induced fluorescence detection. Biomedical Applications, 1994, 654, 185-191.	1.7	21
671	Recent Developments in Porphyrin Separations Using Capillary Electrophoresis with Native Fluorescence Detection. Journal of Liquid Chromatography and Related Technologies, 1994, 17, 1917-1927.	1.0	20
672	Nanoliter Volume Sample cells for 1H NMR: Application to Online Detection in Capillary Electrophoresis. Journal of the American Chemical Society, 1994, 116, 7929-7930.	13.7	136
673	1H-NMR Spectroscopy on the Nanoliter Scale for Static and Online Measurements. Analytical Chemistry, 1994, 66, 3849-3857.	6.5	145
674	Postcolumn Radionuclide Detection of Low-Energy .beta. Emitters in Capillary Electrophoresis. Analytical Chemistry, 1994, 66, 2382-2389.	6.5	38
675	Novel detection schemes for the trace analysis of amino acids and peptides using capillary electrophoresis. Journal of Separation Science, 1993, 5, 403-412.	1.0	13
676	Charge Transfer Device Detectors and Their Applications to Chemical Analysis. Critical Reviews in Analytical Chemistry, 1993, 24, 59-98.	3.5	31
677	<title>Analysis of neuropeptides using capillary zone electrophoresis with multichannel fluorescence detection</title> . , 1991, , .		5
678	Charge-injection device detection for improved performance in atomic-emission spectroscopy. Talanta, 1990, 37, 15-21.	5.5	10
679	Rectangular capillaries for capillary zone electrophoresis. Analytical Chemistry, 1990, 62, 2149-2152.	6.5	138
680	Crossed Interferometric Dispersive Spectroscopy. Applied Spectroscopy, 1990, 44, 14-20.	2.2	13
681	Analysis of microgram amounts of particulate material by simultaneous multiwavelength AES. Mikrochimica Acta, 1989, 99, 347-353.	5.0	1
682	A comparison of CCD and CID detection for atomic emission spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1989, 44, 683-692.	2.9	24
683	A Linear Charge-Coupled Device Detector System for Spectroscopy. Applied Spectroscopy, 1989, 43, 953-962.	2.2	27
684	Spatially Encoded Fourier Transform Spectroscopy in the Ultraviolet to Near-Infrared. Applied Spectroscopy, 1989, 43, 1378-1384.	2.2	31

#	Article	IF	CITATIONS
685	High-performance charge transfer device detectors. Analytical Chemistry, 1988, 60, 282A-291A.	6.5	102
686	Applications of charge transfer devices in spectroscopy. Analytical Chemistry, 1988, 60, 327A-335A.	6.5	126
687	Electro-Optical Characterization Of The Tektronix TK512M-011 Charge-Coupled Device. Optical Engineering, 1987, 26, .	1.0	18
688	Single-Element Charge-Injection Device As A Spectroscopic Detector. Optical Engineering, 1987, 26, .	1.0	4
689	Future Developments – Introduction. , 0, , 259-279.		5
690	Nanofluidic Interconnects within a Multilayer Microfluidic Chip for Attomolar Biochemical Analysis and Molecular Manipulation. , 0, , .		5
691	Single Cell Mass Spectrometry. , 0, , 109-133.		2
692	Direct Metabolomics from Tissues and Cells: Laser Ablation Electrospray Ionization for Small Molecule and Lipid Characterization. , 0, , 140-158.		1
693	Analytical Techniques in Metabolomics Integrating Nuclear Magnetic Resonance Spectroscopy and Chromatography with Mass Spectrometry. , 0, , 227-243.		0
694	Single-Cell Measurements with Mass Spectrometry. , 0, , 269-293.		6
695	Single-Cell Mass Spectrometry. , 0, , 197-218.		1