Nam-Soo Jwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8668583/publications.pdf

Version: 2024-02-01

279798 377865 2,079 34 23 34 citations h-index g-index papers 36 36 36 2949 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mitogen-Activated Protein Kinase OsMEK2 and OsMPK1 Signaling Is Required for Ferroptotic Cell Death in Rice–Magnaporthe oryzae Interactions. Frontiers in Plant Science, 2021, 12, 710794.	3.6	14
2	Focal Accumulation of ROS Can Block Pyricularia oryzae Effector BAS4-Expression and Prevent Infection in Rice. International Journal of Molecular Sciences, 2020, 21, 6196.	4.1	13
3	Iron- and Reactive Oxygen Species-Dependent Ferroptotic Cell Death in Rice- <i>Magnaporthe oryzae</i> Interactions. Plant Cell, 2019, 31, 189-209.	6.6	123
4	RSL Class II Transcription Factors Guide the Nuclear Localization of RHL1 to Regulate Root Hair Development. Plant Physiology, 2019, 179, 558-568.	4.8	23
5	Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants. Frontiers in Plant Science, 2017, 8, 1687.	3.6	126
6	Visualization of Multicolored in vivo Organelle Markers for Co-Localization Studies in Oryza sativa. Molecules and Cells, 2017, 40, 828-836.	2.6	26
7	Magnaporthe oryzae Effector AVR-Pii Helps to Establish Compatibility by Inhibition of the Rice NADP-Malic Enzyme Resulting in Disruption of Oxidative Burst and Host Innate Immunity. Molecules and Cells, 2016, 39, 426-438.	2.6	67
8	Protein interactome analysis of 12 mitogenâ€activated protein kinase kinase kinase in rice using a yeast twoâ€hybrid system. Proteomics, 2014, 14, 105-115.	2.2	14
9	Yeast Two-Hybrid System for Dissecting the Rice MAPK Interactome. Methods in Molecular Biology, 2014, 1171, 195-216.	0.9	5
10	Understanding the Responses of Rice to Environmental Stress Using Proteomics. Journal of Proteome Research, 2013, 12, 4652-4669.	3.7	63
11	The rice MAPKK–MAPK interactome: the biological significance of MAPK components in hormone signal transduction. Plant Cell Reports, 2013, 32, 923-931.	5.6	68
12	Rice Mitogen-Activated Protein Kinase Interactome Analysis Using the Yeast Two-Hybrid System Â. Plant Physiology, 2012, 160, 477-487.	4.8	81
13	Secretome analysis of <i>Magnaporthe oryzae</i> using in vitro systems. Proteomics, 2012, 12, 878-900.	2.2	30
14	Using metabolic profiling to assess plant-pathogen interactions: an example using rice (Oryza sativa) and the blast pathogen Magnaporthe grisea. European Journal of Plant Pathology, 2011, 129, 539-554.	1.7	68
15	Plant secretome: Unlocking secrets of the secreted proteins. Proteomics, 2010, 10, 799-827.	2.2	255
16	Rice <i>OsSIPK</i> . Plant Signaling and Behavior, 2009, 4, 448-450.	2.4	1
17	Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance. Molecules and Cells, 2009, 28, 431-440.	2.6	67
18	Rice OsSIPK and its orthologs: A "central master switch―for stress responses. Biochemical and Biophysical Research Communications, 2009, 379, 649-653.	2.1	21

#	Article	IF	Citations
19	Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. Planta, 2008, 227, 981-990.	3.2	57
20	Integrated Transcriptomics, Proteomics, and Metabolomics Analyses To Survey Ozone Responses in the Leaves of Rice Seedling. Journal of Proteome Research, 2008, 7, 2980-2998.	3.7	159
21	Systematic Secretome Analyses of Rice Leaf and Seed Callus Suspension-Cultured Cells: Workflow Development and Establishment of High-Density Two-Dimensional Gel Reference Maps. Journal of Proteome Research, 2008, 7, 5187-5210.	3.7	58
22	Growth retardation and death of rice plants irradiated with carbon ion beams is preceded by very early dose- and time-dependent gene expression changes. Molecules and Cells, 2008, 25, 272-8.	2.6	13
23	Differential Expression of Defense/Stress-Related Marker Proteins in Leaves of a Unique Rice Blast Lesion Mimic Mutant (blm). Journal of Proteome Research, 2006, 5, 2586-2598.	3.7	37
24	Rejuvenating rice proteomics: Facts, challenges, and visions. Proteomics, 2006, 6, 5549-5576.	2.2	58
25	Functional characterization ofÂOsRacB GTPase – aÂpotentially negative regulator ofÂbasal disease resistance inÂrice. Plant Physiology and Biochemistry, 2006, 44, 68-77.	5.8	43
26	Role ofÂdefense/stress-related marker genes, proteins andÂsecondary metabolites inÂdefining rice self-defense mechanisms. Plant Physiology and Biochemistry, 2006, 44, 261-273.	5.8	122
27	Two novel protein kinase genes, OsMSRPK1 and OsMSURPK2, are regulated by diverse environmental stresses in rice. Journal of Plant Biology, 2006, 49, 247-256.	2.1	16
28	The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43, 397-406.	5.8	60
29	Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway. Plant Pathology Journal, 2005, 21, 149-157.	1.7	21
30	Importance of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen response pathways and growth and reproduction revealed by their transcriptional profiling. Gene, 2003, 322, 93-103.	2.2	84
31	Molecular cloning and mRNA expression analysis of a novel rice (Oryzasativa L.) MAPK kinase kinase, OsEDR1, an ortholog of ArabidopsisAtEDR1, reveal its role in defense/stress signalling pathways and development. Biochemical and Biophysical Research Communications, 2003, 300, 868-876.	2.1	94
32	Effects of signaling molecules, protein phosphatase inhibitors and blast pathogen (Magnaporthe) Tj ETQq0 0 0 peroxidase (OsPHGPX) gene in seedling leaves. Gene, 2002, 283, 227-236.	rgBT /Over 2.2	rlock 10 Tf 50 60
33	Signalling molecules and blast pathogen attack activates rice OsPR1a and OsPR1b genes: A model illustrating components participating during defence/stress response. Plant Physiology and Biochemistry, 2001, 39, 1095-1103.	5.8	126
34	Secretome: Toward Deciphering the Secretory Pathways and Beyond. , 0, , 83-90.		3