Zheng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8668374/publications.pdf

Version: 2024-02-01

623734 752698 20 640 14 20 h-index citations g-index papers 20 20 20 1014 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Identification of a Pt ₃ Co Surface Intermetallic Alloy in Pt–Co Propane Dehydrogenation Catalysts. ACS Catalysis, 2019, 9, 5231-5244.	11.2	111
2	Towards ALD thin film stabilized single-atom Pd ₁ catalysts. Nanoscale, 2016, 8, 15348-15356.	5.6	98
3	Engineering Active Fe Sites on Nickel–Iron Layered Double Hydroxide through Component Segregation for Oxygen Evolution Reaction. ChemSusChem, 2020, 13, 811-818.	6.8	62
4	Engineering the Local Coordination Environment and Density of FeN ₄ Sites by Mn Cooperation for Electrocatalytic Oxygen Reduction. Small, 2022, 18, e2200911.	10.0	44
5	Tuning external surface of unit-cell thick pillared MFI and MWW zeolites by atomic layer deposition and its consequences on acid-catalyzed reactions. Journal of Catalysis, 2016, 337, 177-187.	6.2	40
6	Structure and reactivity of single site Ti catalysts for propylene epoxidation. Journal of Catalysis, 2019, 377, 419-428.	6.2	38
7	Effects of TiO ₂ in Low Temperature Propylene Epoxidation Using Gold Catalysts. Journal of Physical Chemistry C, 2018, 122, 1688-1698.	3.1	37
8	Oxidation-Induced Atom Diffusion and Surface Restructuring in Faceted Ternary Pt–Cu–Ni Nanoparticles. Chemistry of Materials, 2019, 31, 1720-1728.	6.7	30
9	Atomic Layer Deposition Overcoating Improves Catalyst Selectivity and Longevity in Propane Dehydrogenation. ACS Catalysis, 2020, 10, 13957-13967.	11.2	30
10	Mechanistic insights into the direct propylene epoxidation using Au nanoparticles dispersed on TiO2/SiO2. Chemical Engineering Science, 2018, 191, 169-182.	3.8	26
11	Theoretical Studies on the Direct Propylene Epoxidation Using Gold-Based Catalysts: A Mini-Review. Catalysts, 2018, 8, 421.	3.5	21
12	Analysis of the propylene epoxidation mechanism on supported gold nanoparticles. Chemical Engineering Science, 2017, 174, 229-237.	3.8	20
13	Quantification of rhenium oxide dispersion on zeolite: Effect of zeolite acidity and mesoporosity. Journal of Catalysis, 2019, 372, 128-141.	6.2	16
14	Design and Characterization of ALD-Based Overcoats for Supported Metal Nanoparticle Catalysts. ACS Catalysis, 2021, 11, 2605-2619.	11.2	16
15	Design and synthesis of model and practical palladium catalysts using atomic layer deposition. Catalysis Science and Technology, 2016, 6, 6845-6852.	4.1	11
16	Mesopore differences between pillared lamellar MFI and MWW zeolites probed by atomic layer deposition of titania and consequences on photocatalysis. Microporous and Mesoporous Materials, 2019, 276, 260-269.	4.4	11
17	Gold Catalysts Synthesized Using a Modified Incipient Wetness Impregnation Method for Propylene Epoxidation. ChemCatChem, 2020, 12, 5993-5999.	3.7	10
18	Enhancement of Copper Catalyst Stability for Catalytic Ozonation in Water Treatment Using ALD Overcoating. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43323-43326.	8.0	9

ZHENG LU

#	Article	IF	CITATIONS
19	Integrated Experimental and Computational K-Edge X-ray Absorption Near-Edge Structure Analysis of Vanadium Catalysts. Journal of Physical Chemistry C, 2022, 126, 11949-11962.	3.1	7
20	Scalable synthesis of supported catalysts using fluidized bed atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 042404.	2.1	3